
Approximating Solutions to Discrete State Space Markov Decision Processes in a
Single Episode

Naveen Durvasula† and Aravind Srinivasan‡ and John P. Dickerson‡
†Montgomery Blair High School ‡University of Maryland

140.naveen.d@gmail.com, {srin,john}@cs.umd.edu

Abstract

Many optimization problems associated with decision making
in reinforcement learning (RL) settings are naturally mod-
eled via Markov decision processes (MDPs). In many set-
tings, portions of the model are unknown (e.g., the state space,
state-transition function, and so on). We consider one such
constrained setting: an agent can “walk through” an MDP
with known state and action space, but unknown transition
and reward function, exactly once, and has to make transi-
tion decisions on the fly. We propose a principled Gaussian-
Process-based approach to this single-episode control problem.
Surprisingly, in exploratory experiments, our method performs
well when compared to (more traditional, and substantially
less-constrained) methods that can sample the transition and
reward functions multiple times.

1 Introduction
In many real-world and virtual settings, agents learn by inter-
acting with their environment. Autonomous vehicles interact
first with high-fidelity simulators and later real-world envi-
ronments to learn policies that map their perceived state to
“successful” driving actions (Urmson et al. 2008). A biped
robot learns how to lift itself off the ground and walk toward
a door by way of physics-based simulation and, later, in a
physical laboratory (Huang et al. 2001). Trading agents inter-
act in strategic and uncertain environments so as to maximize
their expected monetary reward (Hu, Wellman, and others
1998). The field of reinforcement learning (RL) addresses
the problem of mapping states to actions such that some
numerical reward-signal is maximized in expectation.

When the full model is known or can be learned via sam-
pling, dynamic-programming-based approaches can compute
optimal policies that map states to actions such that some
cumulative expected reward is maximized, and scalable but
approximate methods can be used when the number of states
and/or actions grows. Model-free approaches do not explic-
itly build a representation of the underlying environment,
but instead sample actions repeatedly to learn how to act
in a state. Yet, in some settings, an agent must learn to act
in an uncertain environment via only a single episode. For
example, a graduate student wishes to maximize the reward
from her Ph.D., but likely does not wish to repeatedly sample
multiple Ph.D. processes. How should an agent act in such a
“single-shot” constrained setting?

In this paper, we address the constrained setting where
an agent can “walk through” a Markov decision process
(MDP) with known state and action space, but with unknown
transition and reward functions, exactly once, and has to
make transition decisions on the fly. Total reward is accu-
mulated throughout that single episode. We propose a prin-
cipled approach based on Gaussian processes (GPs) to this
single-episode control problem, and discuss its relation to
model-based and model-free approaches to decision-making
under uncertainty. Surprisingly, in exploratory experiments,
our method performs well when compared to substantially
less-constrained, and widely used, methods that can sample
both the transition and reward functions multiple times.

The paper progresses as follows. Section 2 defines the
environment in which we operate, and places our proposed
model in the greater RL literature. Section 3 gives a high-
level overview of our approach, and discusses the classic
exploration-exploitation tradeoff in the context of our single-
episode model, while Sections 4 and 5 define in depth our
GP-based approach to learning a policy. Finally, Section 6 ex-
perimentally compares an implementation of our approach on
a toy model to a less-constrained, state-of-the-art RL method.

2 Preliminaries
In this section, we formally define the “on-demand” en-
vironment in which we operate, as well as some math-
ematical constructs that will be referred to later on. We
begin with a brief overview of the MDP paradigm (§2.1;
for an in-depth overview, see (Sutton and Barto 1998;
Kaelbling, Littman, and Moore 1996; Puterman 2014)). We
then place our setting in a hierarchy of RL problems repre-
sentable as MDPs, and compare briefly to model-based and
model-free approaches to RL (§2.2).

2.1 Markov Decision Processes
We start with the definition of a Markov decision pro-
cess, or MDP. An MDP M is defined by the tuple
(S,A,Ra(·, ·), Pa(·, ·)), and consists of a Markov chain and
an agent capable of traversing the chain. The nodes of the
Markov chain are given by elements of S, otherwise known
as the state space. On each time iteration, the agent, currently
in some state s ∈ S, selects an action a from the action
space A, transitions to another state s′ ∈ S, and receives a
real-valued “reward”. For each potential future state s′, the

probability that the agent will transition from s to s′ condi-
tioned on the selection of action a is given by Pa(s, s′), the
state transition function. Likewise, the reward earned from
this transition step is given by Ra(s, s′), the reward func-
tion. The objective of the agent is to find a policy function
π : S 7→ A such the expected total cumulative reward after
T iterations

E

[
T∑
t=1

Rπ(st)(st, st+1)

]
is maximized. For problems with an infinite time horizon,
we introduce a parameter γ ∈ (0, 1) which serves to prevent
the cumulative reward from being infinite. In these cases, the
expected discounted cumulative reward

E

[
T∑
t=1

γtRπ(st)(st, st+1)

]
is maximized. The parameter γ controls the “greediness” of
the agent: a smaller γ will incentivize short-term gain. In
other formulations, rather than defining a horizon, we define
a set of termination states S∅ ⊂ S. The agent must find a
policy π such that the expected cumulative reward

E

 ∑
st+1 6∈S∅

Rπ(st)(st, st+1)


is maximized.

2.2 Solvers and the Environment Poset
We now give structure to the set of all RL problems describ-
able by a MDP and define a partial ordering of hardness over
sets of problems. We use this structure to formally define
general RL solvers. We then describe the on-demand envi-
ronment and our solver, and discuss their relation to current
literature.

We first define the set of all RL problems P describable
by a MDP. We let the set of all MDPs given by the set of all
tuples (S,A,Ra(·, ·), Pa(·, ·)) beM. Intuitively, a problem
p ∈ P consists of a MDP M ∈ M and the set of elements
in the tuple given by M that are known to the agent before
its traversal. An environment is a tuple indicating the agent’s
level of knowledge of each of the elements of M.

For each element m ∈ M for some MDP M ∈ M we
denote two levels of understanding:

1. the agent has complete knowledge of m: we denote this
level of knowledge by m;

2. the agent has no knowledge of m: we denote this level of
knowledge by ∅.

We make one exception—it is impossible for an agent to
have no knowledge of the action space A. The agent’s task
is to construct a policy π : S 7→ A. While the agent gains
knowledge of S during its traversal, it is impossible for the
agent to gain knowledge of A. If the set of actions that are
visible to the agent is the empty set ∅, then it is impossible
for the agent to construct a map π : S 7→ A.

For the state transition function Pa(·, ·) and reward func-
tion Ra(·, ·), we define an intermediate stage of knowledge:

being able to sample from the function—we denote this level
of knowledge by P ′a or R′a respectively. An agent has sam-
pling access to Pa if it can draw from the distribution of
future states conditioned on a given state and action. Like-
wise, an agent has sampling access to Ra if it can draw from
the distribution of rewards conditioned on a given state and
action. Note that the above requires an agent to have knowl-
edge of S and A. Similarly, complete knowledge of Pa(·, ·)
or Ra(·, ·) would imply complete knowledge of S and A.

With the above definitions, we define an environment E
to be a length-four tuple indicating the amount of infor-
mation known to the agent. For example, the environment
(S,A, P ′a, R

′
a) would indicate that the agent has access to the

state and action spaces, but can only sample from the state
transition function and reward function. The complete set of
environments

E = {(∅, A, ∅, ∅),
(S,A, ∅, ∅),
(S,A, P ′a, ∅), (S,A, ∅, R′a),

(S,A, P ′a, R
′
a), (S,A, Pa, ∅), (S,A, ∅, Ra),

(S,A, Pa, R
′
a), (S,A, P ′a, Ra),

(S,A, Pa, Ra)}

(1)

is a graded poset with 6 rank levels. For some environments
E,E′ ∈ E , we let E � E′ if and only if all elements of E are
information states less than or equal to their corresponding
counterparts in E′, and there exists at least one element of E
that is a strictly lesser information state than its counterpart
in E′. Each line of Equation (1) denotes one rank level of
E , with the “hardest” environment (∅, A, ∅, ∅) at rank 1. For
some E,E′ ∈ E , we say that E is harder than E′ if and only
if E � E′.

We now formally define the set of problems P =M×E .
For any problem p ∈ P , we let M : P 7→ M denote the
corresponding MDP and E : P 7→ E denote the correspond-
ing environment. For all environments E ∈ E we define the
environment class PE = {p ∈ P | E � E(p)}.

We denote the set of all policies given a MDP M ∈M as
Π(M). We let the set of all policies (over all MDPs) be Π. A
solver for an environment class PE is a map SE : PE 7→ Π
such that ∀p ∈ PE, SE(p) ∈ Π(M(p)). We denote the set of
all possible solvers, or solver class, for some environment
class PE as SE, and the set of all solver classes SE as SE . The
set SE is a graded poset as well, where SE � SE′ ⇐⇒ E �
E′. We say that the solver class SE is more powerful than the
solver class SE′ if and only if SE � SE′ . Note that by the
definition of an environment class, SE � SE′ ⇐⇒ SE ⊃ SE′ .

We now describe current literature in the context of this
framework. The set of model-based reinforcement learning
algorithms belong to the solver class S(S,A,Pa,Ra), as the
complete MDP must be accessible to the agent. These in-
clude early dynamic-programming methods such as value
iteration (Bellman 1957) and policy iteration (Howard 1960).
More recently, more-powerful solvers known as model-
free methods belonging to the solver class S(S,A,P ′a,R

′
a)

were developed. Notable examples of these methods in-
clude SARSA (Rummery and Niranjan 1994), Q-Learning

(Watkins 1989), Deep Q-Learning (Mnih et al. 2013; Mnih et
al. 2015), and Policy Gradient methods (Sutton et al. 2000).
Deep connections exist between model-free and model-
based methods to solve this class of problem (Boyan 1999;
Parr et al. 2008), involving space complexity, computational
complexity, and sample complexity (Strehl et al. 2006). Re-
cent methods even connect both approaches (Gu et al. 2016;
Racanière et al. 2017). Yet, while recent advances in RL have
made computationally tractable problems with massive (and
even continuous) state and action spaces, these problems still
belong to the same solver class.

In this paper, we present what we believe to be the first gen-
eral solver more powerful than those of the class S(S,A,P ′a,R

′
a)

for discrete (and finite) state-space problems. We refer to the
set of environments (S,A, ∅, ∗) as on-demand environments
as the agent does not have the ability to plan in advance due
to lack of knowledge of the state transition function. Our
solver belongs to the highly constrained class S(S,A,∅,∅). The
only problems that it is unable to solve are those in which the
agent knows only what actions it can take. We next give an
overview of its functioning.

3 Simulated Problems, Subsolvers, &
Subpolicies

We are given a problem p ∈ P(S,A,∅,∅). We first define an
observation. Given state and action spaces S and A respec-
tively, an observation o ∈ O(S,A) is a tuple (s, a, r, s′) that
denotes a state transition. The initial state is given by s ∈ S,
the action taken is given by a ∈ A, the reward received is
given by r ∈ R, and the next state is given by s′ ∈ S. Thus,
the set of all observations O(S,A) is S ×A× R× S.

We denote the set of state-transition functions Pa(·, ·) for
a given a state space S and action space A as T (S,A). Like-
wise we denote the set of reward functionsRa(·, ·) for a given
a state space S and action space A asR(S,A).

We introduce more general notation. We let Σ(X,Y) de-
note the set of all mappings M : X 7→ P such that P is
the set of probability measures on the Borel algebra1 on Y .
The set Σ(X,Y) can be thought of as the set of stochastic
functions that map X to Y . As shorthand, we represent maps
M ∈ Σ(X,Y)×Σ(X,Z) as maps M ∈ Σ(X,Y ×Z) such
that M(x) = MY (x) ∗MZ(x) for M = (MY ,MZ) and
x ∈ X . We note that Σ(X,Y × Z) 6= Σ(X,Y)× Σ(X,Z)
– in fact, the latter is only a subset of the former. This is
true for the same reason as why one cannot define a joint
distribution from only a set of marginal distributions. We can
formally describe the set R(S,A) = Σ(S × A,R) and the
set T (S,A) = Σ(S ×A,S).

Our solver makes use of a function approximator ℵ :
O(S,A)t−1 7→ T (S,A) × R(S,A) which takes as input
the observations the agent has seen after t iterations and re-
turns an approximated state transition function and reward
function.

On time iteration t, we compute using the function
approximator ℵ(o) = (Pa(·, ·)|t, Ra(·, ·)|t) where o ∈
O(S,A)t−1 is our running list of observations. We then

1A Borel algebra on a topological space Y is a σ-algebra gener-
ated by the open sets of Y .

construct a simulated problem p|t such that M(p|t) =
(S,A, Pa(·, ·)|t, Ra(·, ·)|t) and E(p|t) = (S,A, Pa, Ra).
We set the initial state st1 of the simulated problem p|t to
be st, the current state.

We then use a subsolver S ∈ S(S,A,Pa,Ra) to generate a
subpolicy π|t. Note that S can be any solver as (S,A, Pa, Ra)
is the least hard environment. We let π(st) = π|t(st1). Upon
executing π(st), we gain a new observation. We repeat this
process to generate π. Note that in our solver, π is defined
only at states that the agent visits.

3.1 Exploration Versus Exploitation
When we have only few observations, ℵ will return poor
approximations of Pa(·, ·) and Ra(·, ·). Likewise, when
we have many observations, for the sake of computational
tractability, we would like to execute multiple actions from
π|t without re-running the solver S.

We resolve our first conundrum with an ε-greedy approach.
We define an exploration constant ε ∈ (0, 1) and an explo-
ration distribution e : A 7→ R. On time iteration t, with
probability εt, we draw π(st) from e. A good choice of e al-
lows the agent to explore the action space A while preventing
the agent from taking clearly non-optimal actions.

We resolve the second issue with the use of a
trust factor α ∈ [1,∞). On time iteration t, we let
π(st), . . . , π(st+bαtc) = π|t(st1), . . . , π|t(stbαtc). A good
choice of α has bαtc grow with the prediction accuracy of ℵ.

The hyperparameters ε, e, and α cannot be directly op-
timized for – they must be set based on problem-specific
knowledge or intuition as there is no way to “test” the ef-
fect of changing them since we do not have the ability to
sample from Pa(·, ·). We direct the reader to Figure 1 in the
Appendix for a pictorial representation of our solver.

4 Defining the Function Approximator
We now describe ℵ, the backbone of our solver that
predicts the state transition and reward functions given
some observations. We let ℵ(o) = (ℵP (o),ℵR(o)) where
ℵP : O(S,A)t 7→ T (S,A) returns Pa(·, ·)|t+1 and ℵR :
O(S,A)t 7→ R(S,A) returns Ra(·, ·)|t+1.

We begin with a high-level overview of how ℵP functions.
We will define a bijective state-decomposition function which
will transform states into a set of simplices, each paired with
a natural number. We will then use a Gaussian-Process-based
scheme to learn the distribution over the decomposed state
given an action and our current state. We use the predicted
distribution along with the inverse of our decomposition map
to reconstruct Pa(·, ·)|t+1.

The approximator ℵR functions similarly. Again, we use a
Gaussian Process scheme. However, in this case, the Gaussian
Process directly learns the distribution over the reward given
an action and our current state to predict Ra(·, ·)|t+1.

4.1 Decomposing States
We now describe the bijective state decomposition D : S 7→
S. Any given state s ∈ S can be described as a set of vectors
– in practice, this is how states are stored. We can therefore
represent the state space S as the Cartesian product of a series

of vector spaces. As our state space is discrete, each of these
vector spaces is isomorphic to Nk for some k ∈ N. However,
as we enforce that our state space is finite, we instead write
S as a product of finite subsets (not subspaces) V k ⊂ Nk.
Thus, for some sequence of natural numbers {mk}nk=1, we
can write

S =

κ⋃
x=0

(V m1)
x ×

κ⋃
x=0

(V m2)
x × · · · ×

κ⋃
x=0

(V mn)
x

where κ ∈ N is an arbitrarily large constant. We let Sk
denote the kth vector space in the product, V mk . We define a
sequence of vectors {lk}nk=1 such that each vector lk ∈ Nmk .
The ith component of vectors in Sk can take on lik distinct
values, where lik is the ith component of lk. It follows that

|Sk| =
mk∏
i=1

lik

We partition the state s into blocks [s]1, . . . , [s]n such that
some vector v ∈ s belongs to a block [s]k if and only if
v ∈ Sk. We now describe a bijective block decomposition
D : (Sk)r 7→ ∆|Sk|−1 × N where

∆c ≡

{
x ∈ Rc+1 |

c+1∑
i=1

xi = 1, xi > 0

}
denotes the c-simplex, and r, k ∈ N are arbitrary constants.
The mapD decomposes arbitrary blocks [s]k into a (|Sk|−1)-
simplex Xk that we call the joint probability mass tensor and
a natural number ck that we call the size parameter. The
dimensions of Xk are given by lk. Just as we indexed values
of lk with the notation lik, we will index values of Xk with
the notation Xv

k where v ∈ Nmk .
We describe D with an example. Suppose that our block

[s]k =

{[
1
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
0

]}
consists of dimension 2, Boolean-valued vectors. In this case,

lk =

[
2
2

]
and |Sk| = 4, andD : (Sk)4 7→ ∆3×N. We define a random
vector V ∈ [s]k which is distributed uniformly among the
elements of [s]k. For all v ∈ Sk we let Xv

k = Pr[v = V].
However, with just Xk alone, we cannot reconstruct [s]k. We
let the size parameter ck = |[s]k|. One can reconstruct [s]k
using both Xk and ck as the number of instances of some
vector v ∈ [s]k is precisely equal to ckXv

k . In our example

[s]k =

{[
1
0

]
,

[
1
0

]
,

[
1
1

]
,

[
0
0

]}
7→
([
.25 0
.5 .25

]
, 4

)
We now formally define

D(s) ≡ (D([s]1), D([s]2), D([s]3), . . . , D([s]n))

It follows that S =
∏n
k=1(∆|Sk|−1 ×N). We abuse notation

and allow D to act on observations as well, transforming
states from S to S. More formally, we let D : O(S,A)t 7→
O(S, A)t.

4.2 Predicting State Transitions via Observations
We now describe how ℵP functions. We work under the
assumption that the probability distribution over the quantity
(D([st+1]k)−D([st]k)) conditioned on the action take a ∈
A remains approximately invariant over time for all k ∈
{1 . . . , n} , st ∈ S. We later show that our method can be
easily extended to the case where the probability distribution
over D([st+1]k) conditioned on st ∈ S and the action take
a ∈ A remains approximately invariant over time for all
k ∈ {1 . . . , n}. Although these two cases may not hold
for the state space S, our solver will still function so long
as we can construct a time invariant map (see Appendix
B for definition). Time invariant maps can also make large
problems more computationally tractable.

We start by characterizing the set of possible
(D([st+1]k) − D([st]k)). Recall that the block decom-
position D : (Sk)r 7→ ∆|Sk|−1 × N. We let

7c ≡ {u− v | u,v ∈ ∆c}

(we choose the symbol 7 as this is the shape of space in R3).
It follows that

7|Sk|−1 × Z = {D([st+1]k)−D([st]k)}

where st, st+1 ∈ S. Our approximator ℵP will function by
first mapping our observation o′ = D(o). We now define a
map

δ : St × (∆c × N)2t ×At 7→ (7c × Z×A× IP)t

where IP ⊆ {V mk}nk=1 is the set of state-dependent tran-
sition factors. Formally, IP is the subset of {V mk}nk=1 of
lowest cardinality such that it can be guaranteed that the
state transition function Pa(·, ·) ∈ Σ(IP ×A,S). Intuitively,
IP is the smallest subset of state elements that affect the
distribution over future states.

We now describe the map δ. From a high level, δ will, for
a specific block k, subtract the successive decompositions of
this block, and pair the difference with the action taken on
that time iteration as well as the state dependent transition
factors from that time iteration.

The input to δ comes from the mapped observation o′: it is
given by the tuple

[(s`, D([s`]k), D([s`+1]k), a`)]
t
`=1

where k ∈ {1, . . . , n}. The output of δ given the above is
given by [

(D([s`]k)−D([s`+1]k), a`, i
`
P)
]t
`=1

where i`P ∈ IP is a subset of {[s`]k}nk=1. We now present
an alternative map δ for the case in which the probability
distribution over D([st+1]k) conditioned on st ∈ S and the
action take a ∈ A remains approximately invariant over time.
With only this change, the remainder of our method functions
the same for both cases. We do not change the domain and
codomain of δ. However, we change the output given the
input above to be[

(D([s`]k)− v), a`, i
`
P)
]t
`=1

where v ∈ ∆|Sk|−1 is an arbitrary element of the (|Sk| − 1)-
simplex.

We now again abuse notation and allow δ to act on obser-
vations. Formally, we let δ : O(S, A)t 7→ X where

X ≡
n∏
k=1

(
7|Sk|−1 × Z×A× IP

)t
(2)

We let the kth term in the product of equation (2) be Xk.
The set Xk refers to that in X that was mapped from our
observations of the kth block [s]k. We let the domain of δ be
O(S, A) instead ofO(S, A)×O(S,A) even though original
states s1, . . . , st are required because the original states can
be reconstructed from the decomposed observations using
D−1.

For each Xk, we now define an approximator map Fk :
Xk 7→ Σ(IP ×A,7|Sk|−1)×Σ(IP ×A,Z) using a Gaussian
Process-based approach. In doing so, we define a map

F : X 7→
n∏
k=1

Σ(IP ×A,7|Sk|−1)× Σ(IP ×A,Z)

We note that in the above, we are using the shorthand notation
defined in §3. We let

F7
k :

(
7|Sk|−1 ×A× IP

)t
7→ Σ(IP ×A,7|Sk|−1)

and
FZ
k : (Z×A× IP)

t 7→ Σ(IP ×A,Z)

We consequently let Fk ≡ (F7
k , F

Z
k).

4.3 Gaussian Process-based Approximator Maps
We use Gaussian Processes (GP) to define F7

k and FZ
k . We

start by defining FZ
k , the more straightforward of the two. We

first define the GP.
A GP is a map GP : (Rc × R)k 7→ Σ(Rc,R) that aims

to approximate a stochastic function f : Rc 7→ R where
c, k ∈ N are arbitrary constants. The constant k denotes the
number of data points (x, y) we have, where x ∈ Rc and
y ∈ R.

More specifically, the map GP places a joint normal prior
over the values of f

f ∼ N (µ(f),K(·, ·))

where the functionK : Rc×Rc 7→ R is a kernel function that
defines the covariance matrix of the joint normal distribution.
Given sample points (x, y) for x ∈ Rc and y ∈ R, the map
GP updates the prior using Bayes’ law.

We use GP to describe the approximator map FZ
k . We

first note that IP ∼= Np ⊂ Rp where p ∈ N is an arbitrary
constant. As the action space A can be continuous, we note
that A ∼= Rq where q ∈ N is an arbitrary constant. It follows
that the set IP ×A can be mapped to Rp+q . Thus, we can let

FZ
k : (Rp+q × Z)t 7→ Σ(Rp+q,Z)

We now define

FZ
k

(
[(vi, zi)]

t
i=1

)
≡
〈
GP

(
[(vi, zi)]

t
i=1

)〉

where the notation 〈·〉 : Σ(X,R) 7→ Σ(X,Z) denotes a
rounding operation on the GP.

We now describe the map F7
k . Using the map from IP ×A

to Rp+q as described above, we similarly let

F7
k :

(
Rp+q ×7|Sk|−1

)t
7→ Σ

(
Rp+q,7|Sk|−1

)
We abuse notation and expand the domain of the GP to allow
approximations of vector-valued stochastic functions, letting

GP : (Rc × Rd)k 7→
d∏
i=1

Σ(Rc,R)

where

GP
(

[(xi,yi)]
k
i=1

)
≡
[
GP

([
(xi, y

j
i)
]k
i=1

)]d
j=1

for {xi}ki=1 ⊂ Rc and {yi}ki=1 ⊂ Rd, adopting the vector
index notation defined in §4.1.

Just as we did with FZ
k , we would like to describe F7

k
directly with the GP transformation. However, we cannot do
this as the codomain of F7

k is Σ(Rp+q ×7|Sk|−1,7|Sk|−1)
while the GP transformation will return an element of
Σ(Rp+q × Rd,Rd) where d ∈ N is an arbitrary constant.
Thus, we require a bijective map

T : 7|Sk|−1 7→ Bd

where the set B ⊂ R, in order to use the GP transformation.
We specifically let

Bd =
{
x ∈ Rd | max(|xi|) ≤ 1

}
We describe such a map in §5, and generalize our approach
to allow GPs to approximate functions in any constrained
space such that certain properties of the space hold.

5 Predictions in Constrained Spaces with
Warped Gaussian Processes

We begin by defining the Warped Gaussian Process (WGP).
The WGP was first defined in (Snelson, Ghahramani, and
Rasmussen 2004) as a means of generalizing the GP to ap-
proximate stochastic functions that are not modeled well by
standard GPs. As it is defined by Snelson et al., a WGP per-
forms the same task as a standard GP. Formally, they define
WGP : (Rc × R)k 7→ Σ(Rc,R). However, in a WGP, we
warp the observation space by mapping it to a latent space.
We then assume that a standard GP can appropriately approx-
imate the stochastic function mapping the input space to the
latent space. Finally, we transform the output of the GP back
into the original observation space.

We use a similar approach to generalize the GP framework
to approximate stochastic functions with certain constrained
codomains. We formally define

WGP : (Rc × Y)k 7→ Σ(Rc, Y)

where the set Y is restricted to be homeomorphic to Bd for
some d ∈ N. We let

WGP
(

[(xi,yi)]
k
i=1

)
≡ U

(
GP

(
[(xi, T (yi))]

k
i=1

))

where {yi}ki=1 ⊂ Y , the map T : Y 7→ Bd denotes the
homeomorphism, and U : Σ(Rc,Bd) 7→ Σ(Rc, Y). We now
define the map U as

[U(MB(u))] (y) = [MR(u)] (T (y))

where MB ∈ Σ(Rc,Bd), y ∈ Y , an u ∈ Rc. As MB(u)
and U(MB(u)), probability measures on Borel algebras, are
maps themselves, we use the bracket notation to denote that
the returned probability measure is acting on the following
parameter.

We enforce the homeomorphism condition in order to en-
sure that elements of the range of U maintain properties of
their preimages. If T was not continuous, elements in the
range of U may not map to continuous probability measures
even if their preimages did. Likewise, if T−1 was not contin-
uous, elements in the range of U may not map to probability
measures with connected typical sets even if their preimages
did.

Theorem 1. Suppose we are given two closed sets X,Y ⊂
V , and a vector space V = (V,R,+, ·) defined over the field
of real numbers. Furthermore, suppose that 0 ∈ X ∩ Y . If
there exist continuous functions MX ,MY : V 7→ R such that
for all limit points x ∈ X and y ∈ Y , MX(x) = MY (y) =
1, and for all c ∈ R,v ∈ V , MX(cv) = cMX(v) and
MY (cv) = cMY (v), then X and Y are homeomorphic.

We direct the reader to Appendix C for the proof. We show
that this result can be a powerful tool for modeling variables
in constrained spaces by using it to show a homeomorphism
between the sets 7d and Bd.

Recall that 7d ⊂ Rd+1. Vectors v ∈ 7d must satisfy the
conditions

∑d+1
i=1 vi = 0 and

∑d+1
i=1 |vi| ≤ 2. We first show

a homeomorphism between 7d and Wd ⊂ Rd which we call
the weight space. We define the map W : 7d 7→ Wd such
that for some v ∈ 7d,

v =


v1

v2

...
vn

 7→
−v2

...
−vn

 = w ∈Wd

The name “weight space” comes from the fact that w corre-
sponds to the linear weights of the basis for the hyperplane
given by the linear constraint

∑
vi = 0. We note that the

map W is a homeomorphism as it is continuous and bijective,
and its inverse is also continuous.

By applying the map W , we have removed the constraint∑
vi = 0. It follows that in weight space, only one constraint

holds: the mapped version of the constraint
∑
|vi| ≤ 2. For

some v ∈ 7d, v1 =
∑
wi where w = W (v). With this, we

get

Wd =
{
w ∈ Rd |

∑
|wi|+

∣∣∣∑wi

∣∣∣ ≤ 2
}

We now apply Theorem 1 to show the homeomorphism be-
tween Wd and Bd by defining the functions

MW(v) =

∑n
i=1 |vi|+ |

∑n
i=1 vi|

2

MB(v) = max(|vi|)
These functions satisfy the conditions of MX and MY as
defined in the statement of Theorem 1 (the homeomorphism
is shown explicitly in Appendix C). Letting T be the homeo-
morphism between 7|Sk|−1 and B|Sk|−1, we let

F7
k

(
[(xi,vi)]

t
i=1

)
≡ WGP

(
[(xi,vi)]

t
i=1

)
for {xi}ti=1 ⊂ Rp+q and {vi}ti=1 ⊂ 7|Sk|−1. In doing so,
we have now defined the approximator map Fk, and thus the
full map F ≡ [Fk]

n
k=1. At this point, we have constructed a

map

O(S,A)t 7→ Σ

(
S ×A,

n∏
i=1

(
7|Sk|−1 × Z

))
To complete ℵP , we construct a map Υ to Σ(S × A,S) =
T (S,A) that functions exactly in the same way as the map U ,
except for the requisite map T (which in this case we denote
as Z) is given by either adding D([st+1]k) or the arbitrary
element v ∈ ∆|Sk|−1 back to the outputs of each of the Fk,
and using the map D−1.

To define ℵR, we define the state-dependent reward factors
IR ⊂ {V mk}nk=1 such that Ra(·, ·) ∈ Σ(IR ×A,R). We let
IR ∼= Nr ⊂ Rr. We again map IR × A 7→ Rq+r, letting
ℵR : (Rq+r × R)t 7→ Σ(Rq+r,R). We directly use a GP

ℵR
(

[(xi, yi)]
t
i=1

)
≡ GP

(
[(xi, yi)]

t
i=1

)
for {xi}ti=1 ⊂ Rr+q, and {yi}ti=1 ⊂ R. With this, we have
fully defined the map ℵ. We direct the reader to Figure 2 in
the Appendix for a commutative diagram that describes the
maps that define ℵ.

6 Experiments
We experimentally validate our solver on a toy problem (de-
scribed in detail in Appendix D.1). In our problem, a fish-
ing person P catches fish from a lake on a daily basis and
sells the entirety of his/her catch from the previous day. The
number of fish that P catches each day is given by a positive-
truncated normal distribution that is then discretized with a
rounding operation (we justify this choice in Appendix D.1).
The fish that P catches belong to one of T types. Each type
of fish tends to reside at a different depth of the lake. More
specifically, we uniformly split the lake into depth strata, and
let the typical fish of type k reside in the kth stratum. Each
day, P chooses which depth to fish at. The distribution over
fish types in P ’s catch is thus a function of the depth that
P chooses to fish at. Furthermore, the prices of each of the
T types of fish vary periodically over time. We aim to find
the depth that P should fish at each time iteration in order to
maximize his/her total profit after D days.

We also consider this problem under the following vari-
ants:

1. We let the center of each stratum be uniformly distributed
over all depths—we call this the “random means” variant

2. We let the number of fish that P catches be a well-behaved
(sinusoidal) function of the depth—we call this the “size
by depth” variant.

We note that these two variants are not mutually exclusive—
that is, we also test our model on the combination of these
two variants.

6.1 Experimental Setup
We use GPy (GPy 2014) to implement our solver. In our
setup, we let T = 5. We also test our solver with D = 75
and D = 365. We test this problem as an element of the
environment class P(S,A,∅,R′a)

2. We use Deep Q-Learning
(Mnih et al. 2013; Mnih et al. 2015) as our subsolver (recall
that this solver belongs to the solver class S(S,A,P ′a,R

′
a)). We

run our solver on this problem 50 times per variant combina-
tion. Other hyperparameters to the problem and additional
experimental details are given in Appendix D.1.

We also consider this problem within the environment class
P(S,A,P ′a,R

′
a). For each variant combination, we also test the

Deep Q-Learning solver 50 times. We optimize the learning
rate of that solver and let both our subsolver and the Deep
Q-Learning solver share the same set of hyperparameters (de-
scribed in detail in Appendix D.1). For all experiments, we let
the exploration constant ε = 0.95, the trust factor α = 1.02,
and the exploration distribution e = unif[0, 1]. We note that
ε and α are not optimized. However, in a real-world scenario,
it is impossible to directly optimize for these constants as no
information about Pa(·, ·) or Ra(·, ·) is known.

6.2 Results
We now compare the performance of our solver in the on-
demand environment with that of the Deep Q-Learning solver
in the less constrained environment (S,A, P ′a, R

′
a).

D RM SBD S(S,A,∅,R′a) S(S,A,P ′a,R′a) %

75 0 0 [3908, 3991] [4162, 4227] 94.2

75 0 1 [4493, 4592] [4598, 4687] 97.8

75 1 0 [4239, 4710] [5158, 5525] 83.7

75 1 1 [4572, 5128] [5192, 5748] 88.6

365 0 0 [21278, 21471] [22008, 22079] 96.7

365 0 1 [21449, 21623] [22222, 22273] 96.8

365 1 0 [22506, 23224] [23441, 24220] 95.9

365 1 1 [22309, 23199] [22804, 23581] 98.1

Table 1: Comparative results on the fishing problem between
our solver and the Deep Q-Learning solver

In Table 1, we describe the comparative performance
between our solver (denoted S(S,A,∅,R′a)) and the Deep Q-
Learning solver (denoted S(S,A,P ′a,R

′
a)). The column D de-

notes the time horizon of the MDP. The columns “RM” and
“SBD” denote whether or not we used the Random Means and
Size by Depth variants respectively. The intervals below each
solver denote the rounded 95% confidence interval (assuming
the Student’s t-distribution) for the mean cumulative reward
attained by the solver. The column “%” denotes the mean
ratio of our solver’s cumulative reward to that of the Deep
Q-Learning solver.

2We are in the process of compiling results for the P(S,A,∅,∅)
case, but believe that our current results are sufficient as a proof of
concept for the more complex map ℵP .

6.3 Discussion

We begin by noting that in this relatively simple problem and
its variants, our solver, in a single episode, is consistently
capable of performing at a comparable level to a state-of-the-
art RL method that samples from Pa(·, ·) multiple times—
even when the time horizon is relatively small. In other words,
the map ℵP is capable of accurately approximating Pa(·, ·)
even with relatively few observations. At a more general
level, this experimentally validates the claim that at least well-
behaved stochastic functions can be accurately modeled in
a latent space homeomorphic to the original. This motivates
the idea that Theorem 1 can be a powerful tool in the general
field of stochastic modeling.

We further note that when the time horizon D increases,
our solver’s performance relative to that of the Deep Q-
Learning solver tends to increase. This behavior occurs be-
cause, at some point, the approximation of Pa(·, ·) given by
ℵP becomes very accurate. Thus, at this point, our agent
begins to act optimally. As the time horizon increases, our
agent’s initial errors become insignificant with respect to the
cumulative reward.

7 Conclusions & Future Research

In this paper, we presented a principled method for approx-
imating the optimal policy of discrete state space MDPs
in the highly constrained—yet often realistic—environment
in which the agent has no knowledge of the state transi-
tion or reward functions. Our method is computationally
tractable—capable of running on commodity hardware—and
has been shown experimentally to demonstrate comparable
performance to state-of-the-art methods that are capable of
sampling from the state transition function.

We believe that the natural and highly impactful applica-
tion of this work is in the field of automated mechanism de-
sign (Conitzer and Sandholm 2002; Conitzer and Sandholm
2004; Sandholm and Likhodedov 2015; Albert, Conitzer, and
Stone 2017). A mechanism design problem can be written
as a MDP where the reward Ra(·, ·) is given by the cen-
tral clearinghouse’s (i.e., mechanism designer’s) utility. This
is nonstandard, as current solvers are incapable of solving
these problems—the stochastic behavior of agents is often
unknown or difficult to simulate. However, we believe that
in most scenarios, a mechanism designer with enough in-
tuition can define a time invariant map over the problem’s
state space. Thus, our method could potentially be used to
solve for the mechanism designer’s actions. The power of
our solver in this context comes from the lack of assumptions
that it imposes—other than the time invariant map, we make
no assumptions about the behavior of the agents, including
assumptions regarding the necessity of individual rationality
in the mechanism, or even the capability to act rationally.
Thus, our solver is capable of optimizing over the potentially
even highly stochastic behavior of irrational agents. We direct
the reader to Appendix D.2 for an example of a problem of
this type (where different countries strategically set tariffs on
imports), and see research in this direction as promising.

References
[Albert, Conitzer, and Stone 2017] Albert, M.; Conitzer, V.;

and Stone, P. 2017. Automated design of robust mechanisms.
In AAAI Conference on Artificial Intelligence (AAAI), 298–
304.

[Bellman 1957] Bellman, R. 1957. A Markovian decision
process. Journal of Mathematics and Mechanics 679–684.

[Boyan 1999] Boyan, J. A. 1999. Least-squares temporal
difference learning. In International Conference on Machine
Learning (ICML), 49–56.

[Conitzer and Sandholm 2002] Conitzer, V., and Sandholm,
T. 2002. Complexity of mechanism design. In Proceedings
of the 18th Annual Conference on Uncertainty in Artificial
Intelligence (UAI), 103–110.

[Conitzer and Sandholm 2004] Conitzer, V., and Sandholm,
T. 2004. Self-interested automated mechanism design and
implications for optimal combinatorial auctions. In Pro-
ceedings of the ACM Conference on Electronic Commerce
(ACM-EC), 132–141.

[GPy 2014] GPy. 2014. GPy: A gaussian process framework
in python. http://github.com/SheffieldML/
GPy.

[Gu et al. 2016] Gu, S.; Lillicrap, T.; Sutskever, I.; and Levine,
S. 2016. Continuous deep Q-learning with model-based ac-
celeration. In International Conference on Machine Learning
(ICML), 2829–2838.

[Howard 1960] Howard, R. 1960. Dynamic programming
and Markov processes.

[Hu, Wellman, and others 1998] Hu, J.; Wellman, M. P.; et al.
1998. Multiagent reinforcement learning: theoretical frame-
work and an algorithm. In International Conference on Ma-
chine Learning (ICML), volume 98, 242–250. Citeseer.

[Huang et al. 2001] Huang, Q.; Yokoi, K.; Kajita, S.; Kaneko,
K.; Arai, H.; Koyachi, N.; and Tanie, K. 2001. Planning
walking patterns for a biped robot. IEEE Transactions on
Robotics and Automation 17(3):280–289.

[Kaelbling, Littman, and Moore 1996] Kaelbling, L. P.;
Littman, M. L.; and Moore, A. W. 1996. Reinforcement
learning: A survey. Journal of Artificial Intelligence
Research 4:237–285.

[Mnih et al. 2013] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Graves, A.; Antonoglou, I.; Wierstra, D.; and Riedmiller,
M. 2013. Playing Atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

[Mnih et al. 2015] Mnih, V.; Kavukcuoglu, K.; Silver, D.;
Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.; Ried-
miller, M.; Fidjeland, A. K.; Ostrovski, G.; et al. 2015.
Human-level control through deep reinforcement learning.
Nature 518(7540):529.

[Parr et al. 2008] Parr, R.; Li, L.; Taylor, G.; Painter-
Wakefield, C.; and Littman, M. L. 2008. An analysis of
linear models, linear value-function approximation, and fea-
ture selection for reinforcement learning. In International
Conference on Machine Learning (ICML), 752–759. ACM.

[Puterman 2014] Puterman, M. L. 2014. Markov decision
processes: discrete stochastic dynamic programming. John
Wiley & Sons.

[Racanière et al. 2017] Racanière, S.; Weber, T.; Reichert, D.;
Buesing, L.; Guez, A.; Rezende, D. J.; Badia, A. P.; Vinyals,
O.; Heess, N.; Li, Y.; et al. 2017. Imagination-augmented
agents for deep reinforcement learning. In Proceedings of
the Annual Conference on Neural Information Processing
Systems (NIPS), 5690–5701.

[Rummery and Niranjan 1994] Rummery, G. A., and Niran-
jan, M. 1994. On-line Q-learning using connectionist sys-
tems. Technical report, Cambridge University, Engineering
Department.

[Sandholm and Likhodedov 2015] Sandholm, T., and
Likhodedov, A. 2015. Automated design of revenue-
maximizing combinatorial auctions. Operations Research
63(5):1000–1025.

[Snelson, Ghahramani, and Rasmussen 2004] Snelson, E.;
Ghahramani, Z.; and Rasmussen, C. E. 2004. Warped
gaussian processes. In Advances in neural information
processing systems, 337–344.

[Strehl et al. 2006] Strehl, A. L.; Li, L.; Wiewiora, E.; Lang-
ford, J.; and Littman, M. L. 2006. PAC model-free rein-
forcement learning. In International Conference on Machine
Learning (ICML), 881–888. ACM.

[Sutton and Barto 1998] Sutton, R. S., and Barto, A. G. 1998.
Introduction to reinforcement learning, volume 135. MIT
Press Cambridge.

[Sutton et al. 2000] Sutton, R. S.; McAllester, D. A.; Singh,
S. P.; and Mansour, Y. 2000. Policy gradient methods for
reinforcement learning with function approximation. In Pro-
ceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 1057–1063.

[Urmson et al. 2008] Urmson, C.; Anhalt, J.; Bagnell, D.;
Baker, C.; Bittner, R.; Clark, M.; Dolan, J.; Duggins, D.;
Galatali, T.; Geyer, C.; et al. 2008. Autonomous driving in
urban environments: Boss and the urban challenge. Journal
of Field Robotics 25(8):425–466.

[Watkins 1989] Watkins, C. J. C. H. 1989. Learning from
delayed rewards. Ph.D. Dissertation, King’s College, Cam-
bridge.

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy

Appendix for Paper ID: 7043
A Pictorial representation of an on-demand solver

Figure 1 gives a pictorial representation of the on-demand solver described in Section 3, along with an example of the exploration
versus exploitation tradeoffs made based on total progress.

s1 · · · sl sl+1 sl+2 · · · sm sm+1 sm+2 · · · sT

a1 a1 a1 a1 a1

s2l s2l+1 s2l+2 s2m

a2 a2 a2 a2

s3l s3l+1 s3l+2 s3m

a3 a3 a3 a3

s3l s3l+1 s3l+2 s3m

a3 a3 a3 a3

···

···

···

···
aT−2 aT−1 aT aT

sT−2
l

sT−1
l+1 sTl+2 sTm

aT−1 aT

sT−1
l

sTl+1

aT

sTl

Figure 1: Approximating the optimal policy in an on-demand environment. The columns denote the subpolicies
π|1, π|2, π|3, . . . and the top row of actions denotes the returned values of π. When the current time t is "small", we choose to
explore often, as εt is large. As we progress further, we stop exploring and instead choose to act by taking the first action π|t(st1)
from the optimal policy of the simulated problem p|t. As our trust in Pa(·, ·)|t (given by bαtc) increases, we take more actions
from π|t before optimizing again.

B Time-invariant maps
We note that the domain of the function approximators ℵP and ℵR can be massive to the point in which it becomes computationally
intractable to compute them for larger problems. Furthermore, the conditions stated in §4.2 can be restrictive. We introduce the
notion of a time-invariant map as means of combating these issues.

A P -time invariant map νP : S 7→ NP is a map such that ∃ {mk}n
′

k=1 , {lk}
n′

k=1 for κ ∈ N is an arbitrarily large constant
where

NP =

κ⋃
x=0

(V m1)
x ×

κ⋃
x=0

(V m2)
x × · · · ×

κ⋃
x=0

(V mn′)
x (3)

for V mk is a finite subset of Nmk , the ith component of vectors in V mk can take on lik distinct values, and one of the following
two properties hold
• The probability distribution over D([νP (st+1)]k) conditioned on νP (st) ∈ NP and the action take a ∈ A remains approxi-

mately invariant over time for all k ∈ {1 . . . , n′}
• The probability distribution over the quantity (D([νP (st+1)]k)−D([νP (st)]k)) conditioned on the action take a ∈ A remains

approximately invariant over time for all k ∈ {1 . . . , n′} , st ∈ S
In the above, st ∈ S denotes the current state on time iteration t.

Likewise, a R-time invariant map νR : S 7→ NR is a map such that ∃ {mk}n
′′

k=1 , {lk}
n′′

k=1 where

NR =

κ⋃
x=0

(V m1)
x ×

κ⋃
x=0

(V m2)
x × · · · ×

κ⋃
x=0

(V mn′′)
x (4)

Σ(S ×A,R) Σ(IP ×A,Z)

O(S,A)t O(S, A)t X Xk

Σ(S ×A,S) Σ
(
S ×A,

∏n
i=1

(
7|Sk|−1 × Z

))
Σ(IP ×A,7|Sk|−1)

D

ℵP

ℵR

δ

F=[Fk]nk=1

F Z
k

F7
k

Υ

Figure 2: A full commutative diagram describing the function approximator ℵ.

for V mk is a finite subset of Nmk , the ith component of vectors in V mk can take on lik distinct values, and the probability
distribution over the reward on time t rt ∈ R conditioned on νR(st) ∈ NR and the action taken a ∈ A remains approximately
invariant over time for all k ∈ {1 . . . , n′′}.

We call NP and NR the natural state spaces. We impose constraints (3) and (4) in order to guarantee that the state
decomposition function D can act on elements of the sets NP and NR. We abuse notation and also define νP : O(S,A)t 7→
O(NP , A)t, ν−1

P : O(NP , A)t ×O(S,A)t 7→ O(S,A)t, and νR : O(S,A)t 7→ O(NR, A)t, allowing the time invariant maps to
transform observations into the natural state spaces.

The maps νP and νR allow us to potentially reduce the state space and more tractably compute the maps ℵNP : O(NP , A)t 7→
T (NP , A) and ℵNR : O(NR, A)t 7→ R(NR, A). Alternatively, it may be possible for us to construct natural state spaces such
that the conditions in §4.2 hold, even if they do not hold for the original state space. We note that the setR(NR, A) can easily be
mapped to the setR(S,A) under the transformation

Ra(s, s′) ≡ RNa (νR(s), νR(s′))

where s, s′ ∈ S. Thus, we let ℵNR : O(NR, A)t 7→ R(S,A). Likewise, we can map T (S,A) to T (NP , A) with the transformation

Pa(s, s′) ≡ PNa (νP (s), νP (s′))

and let ℵNP : O(NP , A)t 7→ T (S,A). We let PNa (·, ·) denote the element of T (NP , A) that maps to the true state transition
function Pa(·, ·) ∈ T (S,A) under the above map. We similarly define RNa (·, ·) as that which maps to the reward function
Ra(·, ·). It follows that

ℵ(o) = (ℵP (o),ℵR(o)) = (ℵNP (νP (o)),ℵNR (νR(o)))

for all observations o ∈ O(S,A)t.

C Proof of Theorem 1
We restate the theorem below.

Theorem 1. Suppose we are given two closed sets X,Y ⊂ V , and a vector space V = (V,R,+, ·) defined over the field of real
numbers. Furthermore, suppose that 0 ∈ X ∩ Y . If there exist continuous functions MX ,MY : V 7→ R such that for all limit
points x ∈ X and y ∈ Y , MX(x) = MY (y) = 1, and for all c ∈ R,v ∈ V , MX(cv) = cMX(v) and MY (cv) = cMY (v),
then X and Y are homeomorphic.

Proof. We first show that MX(0) = MY (0) = 0. This comes from the fact that for all c ∈ R,v ∈ V , MX(cv) = cMX(v) and
MY (cv) = cMY (v). Thus, MX(0) = MX(0v) = 0MX(v) = 0. The same applies to MY . As MX and MY are continuous,
and equal 1 at the limit points of X and Y respectively, MX(v) = 0⇐⇒ MY (v) = 0⇐⇒ v = 0. We now show an explicit
bijection between X and Y . We show the map T : X 7→ Y . We let the transformation T scale points x ∈ X such that
MX(x) = MY (T (x)). Thus, we get that

MX(x) = MY (kx)

MX(x) = kMY (x)

k =
MX(x)

MY (x)

This gives us the transformation T (x) = MX(x)
MY (x)x, and likewise, T−1(y) = MY (x)

MX(x)y. However, T and T−1 are undefined at 0.
We fix this by letting T (0) = T−1(0) = 0. Together, T and T−1 give us a bijection. We now show that both transformations are

continuous. As MX and MY are continuous, and MX(v) = 0⇐⇒ MY (v) = 0⇐⇒ v = 0, both T and T−1 are continuous on
the domain X \ 0 and Y \ 0 respectively. We now prove continuity by showing that

lim
c→0

(T (cx)) = 0 ∀x ∈ X

lim
c→0

(T (cx)) = lim
c→0

(
MX(cx)

MY (cx)
cx

)
= lim
c→0

(
MX(x)

MY (x)
cx

)
= lim
c→0

(c)
MX(x)

MY (x)
x

= 0

The same logic applies to show that limc→0(T−1(cy)) = 0 for all y ∈ Y . As we have shown a continuous bijection between X
and Y with continuous inverse, X and Y are homeomorphic.

D Experiments
We test the on-demand solver on a toy problem, which, however, captures a general exploration/exploitation problem with limited
feedback. We compare the performance of the on-demand solver with a standard solver (such as Q learning).

D.1 Fishing
Suppose you are a person P , who fishes on a daily basis. Furthermore, suppose that you aim to maximize your cumulative D-day
reward. You have access to a lake where you can trawl for fish. The lake consists of T different types of fish, each of which tend
to reside at a different depth in the lake. The daily prices of each type of fish fluctuate over time. Every day, P sells his/her catch
from the previous day, accumulating a profit, then selects a depth at which to fish for the current day’s catch. We define P ’s catch
on day t, C, as the set of fish that P sells on day t – that is, the set of fish that P catches on day t− 1. We formally define C as
the set containing the types of each of the fish caught.

We now formally define the state and action space. We let the current state st = (C(t), t). It follows that the state space

S ≡

(∞⋃
i=0

{1, . . . , T}i
)
× {0, . . . , d}

as we let |C| be a random variable over the set of natural numbers. We formally let

|C| ∼ [N](µF , σF) (5)

where [N] denotes the discretized, truncated normal distribution. More specifically, modify the support of the normal distribution
to be N by first truncating it to R≥0, then rounding values to the nearest natural number. We choose this distribution over a
binomial distribution as it allows us to finely control the standard deviation, and thus the stochasticity in the system.

We now define our action space as the set of depths at which P can fish at. For simplicity, we let

A ≡ [0, 1]

We define the state transition function Pa(·, ·) in terms of a set of random variables f1, . . . , fT , where each fk denotes the depth
of an individual fish of type k within the lake. We let the distribution over depth fk for an individual fish of type k ∈ {1, . . . , T}
be normally distributed, given by

fk ∼ N
(

k

T − 1
,

1

6(T − 1)

)
(6)

This choice of standard deviation comes from the fact that we want populations of fish to be stratified. As 99.7% of all fish lie
within 3 standard deviations of the mean, we get that 6Tσ = 1. However, the fish types that reside at mean depth 0 and depth 1
only need half the spread as we can only fish on the interval [0, 1]. Thus, we get that 6(T − 1)σ = 1.

Once P chooses a depth a ∈ A that they will trawl at, they pass a net of radius r through the lake. The probability pk that they
catch a fish of type k given that they trawl at depth a is proportional to ρk, where

ρk(a, r) ≡ Φk(a+ r)− Φk(a− r),
and Φk is the cumulative distribution function for fk. We normalize to get pk

pk(a, r) =
ρk(a, r)∑
i ρi(a, r)

For some s′ = (C ′, t′), our state transition function Pa(·, ·) given by

Pa(s, s′) = δt+1,t′

(∏
c∈C′

pc(a, r)

)
[N] (|C ′| | µF , σF)

where δ refers to the Kronecker delta function.
We now define the reward function Ra(·, ·). The person P sells the entirety of their catch on each day. However, the prices of

different fish vary over time. We let the prices of different types of fish vary in much the same way as the relative densities in P ’s
catch vary over choice of a – in fact, we use the functions pk to define the reward. Suppose that fish prices vary periodically with
period τ . Furthermore, suppose that the lowest-priced fish will be sold for l dollars and the highest priced fish will be sold for h
dollars. The price Rk of fish type k on day t is given by

Rk(t,K) = l + (h− l)pk
(
.5 + cos

(
2πt

τ

)
,K

)
where K is a sort of spread factor that determines how varied the prices of different fish types are at a given time (analogous

to the radius when we were defining the pk). For some s′ = (C ′, t′), the reward is given by

Ra(s, s′) =
∑
c∈C′

Rc(t
′,K)

Interestingly, our fishing problem is a simple generalization of the multi-armed bandit problem; on each time iteration t, we
have a set of (uncountably) infinite arms that we can pull (one per value of a). Furthermore, the distribution over rewards for
each lever changes based on the time iteration t.

We define two variants on the above problem that we will test our solver with.

Random means Our first variant involves letting the means of each of the fk as defined in Equation (6) to be generated
uniformly at random on the interval [0, 1].

Size by depth Our second variation on the problem is letting µF as defined in Equation (5) be a function of our chosen depth
a ∈ A. We let µF = µ+ η sin(2πa) where µ, η ∈ R.

We test the (unmodified) problem under the following conditions

• T = 5

• µF = 30 and σF = 2

• r = 0.05 and K = 0.2

• l = 1 and h = 3

• τ = 365

For the size by depth variant, we let η = 5 and µ = 30.
We now describe the hyperparameter optimization we performed for the Deep Q-Learning solver. We applied the same

hyperparameters to the Deep Q-Learning subsolver of our solver instead of performing hyperparameter optimization each
iteration in order to maintain computational tractability when running many trials. Again, due to constraints of computational
tractability, we the number of training episodes to be 200. We performed 20 iterations of (uniform) randomized hyperparameter
search over the learning rate and exploration decay rate. We restricted the search domain for the learning rate to be [0, 0.1] and
the search domain for the exploration decay rate to be [0.75, 1). We set the initial exploration probability to be 1.

D.2 Tariffs
We describe an example of a mechanism design problem that will test the ability of our solver to manipulate other intelligent
agents.

Suppose that we are government officials of some nation N0 and we are in a sort of trade war with some other nations
N1, . . . , Nn over some product P . Furthermore, suppose that there are k different companies in N0 that sell P internationally
(for the sake of simplicity, these companies sell to all nations N0, . . . , Nn).

We let our action space
A = [0, 1]n

For any a ∈ A, we let ai denote the strength of the tariff that N0 places on Ni. We let at be the action that we take on time t. Let
a0 = n+ 1−

∑
i ai.

More formally, suppose that companies from Ni would make Di dollars in N0 selling P if there were no tariffs in place. To
apply the tariff, we change the price of P imports from Ni such that these companies instead make Diai dollars.

Let ϕit be the response from nation Ni on time iteration t to our action ait. We let ϕit be a list of dimension 1 vectors, each
element of which denotes a shipment of P sold from some N0 company c ∈ {1, . . . , k}. Furthermore,

ϕit = max
ϕ

(Ni(ϕ, ai(ϕ),∼))

where Ni(ϕ, θ,∼) is the utility function of Ni (the symbol ∼ denotes that Ni can be a function of other arbitrary factors), and
ai(ϕ) is a learning function which Ni uses to predict N0’s response to their action. Let ϕt = ϕ1

t , . . . , ϕ
n
t . We let the current

state on time t
st = (ϕt, t)

It follows that our state space

S =

(∞⋃
i=0

Ni
)
× N

We define our utility in terms of a reward function

Ra(st, st+1) =

[
n∑
i=1

R(ϕit)

]
+ aj0D0

where D0 is the amount of money the k companies of N0 would make in N0 if there were no tariffs in place and R(ϕit) gives
the amount of money we would make from the shipment sales ϕit.

By modifying the learning functions a1, . . . , an, we can alter the rationality of an agent. Our solver has the challenging (yet
realistic) goal of manipulating the outputs of the learning functions in order to maximize N0’s profit. We aim to validate our
claim that our solver has strong application in the field of mechanism design through this complex toy problem.

	Introduction
	Preliminaries
	Markov Decision Processes
	Solvers and the Environment Poset

	Simulated Problems, Subsolvers, & Subpolicies
	Exploration Versus Exploitation

	Defining the Function Approximator
	Decomposing States
	Predicting State Transitions via Observations
	Gaussian Process-based Approximator Maps

	Predictions in Constrained Spaces with Warped Gaussian Processes
	Experiments
	Experimental Setup
	Results
	Discussion

	Conclusions & Future Research
	Pictorial representation of an on-demand solver
	Time-invariant maps
	Proof of Theorem 1
	Experiments
	Fishing
	Tariffs

