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Motivation

End stage renal disease (ESRD) affects over 750,000
annually in the United States alone, and this number
is increasing by 5% each year. However, there is only
one sustainable treatment option for ESRD patients:
kidney transplantation.
However, not all kidney transplants are equal!
Depending on comparative biological information
between the donor and patient, a patient’s post-
transplant quality of life and prognosis may vary dra-
matically. Kidney transplantation is time-sensitive
as well, as patients may be in critical condition.

Objective

Develop an accurate, scalable method to predict
match time and organ quality in kidney exchange.

Kidney Paired Donation

Figure 1: A KPD Cycle Figure 2: A KPD Chain

Suppose that an ESRD patient knows someone who
is willing to donate to them, but is biologically in-
compatible. KPD allows such donor-patient pairs to
enter a trading process. We formalize this by repre-
senting the pairs as nodes in a compatibility graph.
Edges denote compatibility between the donor of one
node and the patient of another.

Figure 3: A compatibility graph

A kidney exchange finds the socially optimal set of
cycles/chains that maximize a weighted edge sum.
In practice, this is computationally expensive.

Abstract

Kidney exchanges allow patients with end-stage renal disease to find a lifesaving living donor by way of an organized market.
However, not all patients are equally easy to match, nor are all donor organs of equal quality – some patients are matched within
weeks, while others may wait for years with no match offers at all. Knowledge of expected waiting time and organ quality affects
medical and insurance decisions. This work presents a principled method to estimate the expected quality of the kidney that a
specific patient who enters an exchange will receive, as well as how long it will take to find that match. Estimation is performed via
a novel Bayesian-optimization-based approach that learns a model of a computationally complex underlying Monte Carlo simulator.
With a limited number of expensive simulation trajectories, the model produces practically-applicable results. Such fast and accurate
sampling could provide medical professionals near-instantaneous access to valuable insight regarding a patient’s expected outcome
in a kidney exchange system.

Methodology

To accurately estimate match time and organ quality in stochastic KPD systems, I developed an open source,
realistic simulator (the inner loop of Figure 4). The simulator draws from public demographic data to model
the entry and exit of patients in the system. We can accurately estimate expected match time and organ
quality by simulating a donor-patient pair many times and averaging the results.

Figure 4: Actively Sampling the Black-Box Monte Carlo Simulator with Gaussian Processes

Unfortunately, as simulation is computationally expensive, this naive method is not scalable. I developed a
novel active learning method to instantaneously predict the output of the simulator.
The simulator is modeled by a
Gaussian Process (GP). The
pair with highest uncertainty is
sampled. Images from [1].
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Figure 5: The gradient points to
the distribution’s mode

Figure 6: The typical set is like
an “orbit” around them mode

Figure 7: Hamilton’s equations
allow us to explore the typical set

Given the simulator output, the GP
mean is updated by Bayes’ Law. The
predicted variance is updated by Hamil-
tonian Monte Carlo. Images from [2].

The GP model is compared against several standard regression methods under a simplified matching policy.
Models are compared by the mean absolute residual between their predictions and the simulator output.

Experiments

Figure 8: Prediction of
expected waiting time (in
weeks) by the GP model

Figure 9: Prediction of
expected waiting time (in
weeks) by passively learned
models

Figure 10: Mean absolute
residual (weeks), O-type pa-
tient and AB-type donor

Figure 11: Mean absolute
residual (weeks), all blood
type pairs

Conclusions

With a limited number of expensive simulation
trajectories, the model produced reliably accurate
results in a proof-of-concept setting, outperform-
ing standard regression models. The model and
proof-of-concept experiments support more-intense
computational experiments with a more advanced
matching policy. Aside from providing instanta-
neous access to valuable medical insight, this work
has further applications to kidney exchange, such as
in the design of more socially beneficial matching
mechanisms.
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