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Abstract

In this paper, we analyze the communication complexity of the stable marriage problem
under a model in which agents’ preferences are implicitly described by an embedding into
a metric space. In our model, we define preference by the “closeness” of two agents given
by the pairwise distance operator of the metric space. We answer an open question posed
by Gonczarowski et al.: is it possible to decrease the communication complexity of finding a
stable matching when preference is implicitly indicated by input (for example, when agents
are represented as points in a Euclidean space)? We show that under such a model, there
is no improvement in the communication complexity from the existing Θ(n2) result shown
for Boolean queries. We extend this result by using Matoušek’s variant of the Johnson-
Lindenstrauss transform to show an upper bound on the amount of miscommunication that
can occur while preserving a preference profile.



Summary

In the stable marriage problem, there are n “men” and n “women”, each with a preference
ordering over members of the “opposite sex”. We aim to find a stable marriage, or a one-to-
one matching between the men and women such that no pair containing a man and a woman
mutually prefer each other over their assigned match. In real-world markets, stability has
proven to be an important condition for matching mechanisms to prevent market failures.
As such, minimizing the amount of communication among agents, or the communication
complexity, necessary to find a stable matching is of practical importance, as in doing so we
reduce market congestion. Gonczarowski et al. show that in any market where communication
can only proceed in the form of yes/no questions, on the order of n2 queries are necessary to
find a stable matching or verify that given matching is stable. We study the communication
complexity of the stable marriage problem when the “men” and “women” are represented
as points in space, and agents prefer others that are spatially “closer” to themselves. We
study this model due to its connection to real-world markets: potential matching partners are
defined by some number of properties, and preferences are formed entirely by these properties.
Queries under this model are of the form, “What is an agent’s kth property?”. We show that
even under this model, on the order of n2 queries are required to find or verify a stable
matching. We extend these results to show bounds on the amount of miscommunication
that can occur among agents while still maintaining the original preference ordering.
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1 Introduction

In the stable marriage problem, there are n men and n women, each with preference

ordering over members of the opposite sex. We call the full set of preference orderings for

all men and women the men’s and women’s preference profiles respectively. A marriage is

stable iff there are no blocking pairs, that is, a man and a woman that both prefer each

other over their assigned partners. In their seminal paper, Gale and Shapley introduced

the deferred acceptance (DA) algorithm to (in Θ(n2) time) find a stable marriage efficiently

for any matching market [1]. Experimental evidence has demonstrated the importance of

stability in real-world markets as a means of preventing market failures. Hiring markets with

stable matching mechanisms did not undergo the process of unraveling, or the phenomenon

in which contracts are formed far before the employment date due to competition among

those hiring to match with the best candidates [2].

As real-world markets increasingly adopt stable matching mechanisms, minimizing the

amount of information that relevant parties need to communicate (and hence the amount

of congestion in the market), is of practical significance. We analyze the communication

complexity, or the minimum amount of information in bits that must be passed among agents

to solve the stable marriage problem. This definition of communication complexity leads to a

natural method of analysis: given that agents answer Boolean queries such as, “Does woman

w prefer man m over man m′?”, or vice-versa, what is the minimum number of queries

necessary? We motivate this type of analysis by interpreting it in the context of real-world

markets. In practice, especially in large markets, it is unlikely and/or unreasonable to assume

that each agent has formed preferences over all potential match candidates. Furthermore,

in decentralized markets, agents learn preferences through pairwise queries. Finding answers

to these queries can be costly as resource intensive methods such as interviews may be

necessary. Therefore, a protocol that minimizes the number of queries necessary can reduce
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market congestion.

Under a specified Boolean query scheme, Ng and Hirschberg show that Θ(n2) queries are

required to construct a stable matching or to verify that a given matching is stable [3]. In

[4], Segal expanded this query model to allow for any set of Boolean queries, and proved

a weaker bound of Ω(n2). In [5], Chou and Lu show a bound of Θ(n2 log(n)) for all deter-

ministic communication protocols in which at most a constant fraction of the population

forms blocking pairs. In [6], Gonczarowski et al. proved by various reductions to the dis-

jointness problem [7, 8] that any Boolean query system requires Ω(n2) queries in the worst

case to find a stable or approximately1 stable marriage. The Ω(n2) bound applies to both

deterministic communication protocols and randomized communication protocols. While a

deterministic communication protocol must always output the correct answer, a randomized

communication protocol must for any fixed input output the correct answer with probability

p ≥ 1
2

(it is standard to let p = 2
3
). In [9], Ashlagi et al. give a more optimistic result than

the Ω(n2) bound by constructing a communication protocol that requires O∗(
√
n) bits2 of

communication per agent and finds a stable matching with high probability under natural

assumptions of the agent’s prior knowledge.

1.1 Our model

We consider a general formulation intended to more realistically model matching pro-

cesses that occur in the real-world. The applied significance of communication complexity

analysis is in understanding the minimum amount of market congestion required to natu-

rally arise at a stable matching. If instead a stable matching mechanism is employed, the

communication complexity becomes irrelevant, as there is no practical cost to having agents

1This definition is based on the minimum divorce distance to a stable marriage, or the minimum number
of pairs that must be divorced to reach the most similar stable marriage. We direct the reader to [6] for a
more formal definition.

2f(n) = O∗(g(n)) if there exists n0 and C > 0 such that f(n) ≤ (log n)Cg(n) ∀n ≥ n0.
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share information once all of the preference lists have been submitted to a central clearing-

house. In the natural setting, it is unrealistic to assume that agents have defined preferences

over match candidates before communicating with them. Our formulation aims to incor-

porate preference learning into the communication process. As agents aim to find a stable

matching, they are simultaneously learning their preferences, and the preferences of others.

In our formulation, men and women are represented as elements of metric spaces, or sets

of elements combined with a pairwise distance operator. We use two metric spaces in our

model: the man space representing the set of possible men and the woman space representing

the set of possible women. The sets and distance operators are known publicly to all agents.

We let each agent have an ideal and an identity, both of which are known privately to the

agent. An agent’s ideal is its most desirable match partner. Agents seek candidates on the

other side of the market who have identities that are most similar to the agent’s ideal. This

measure of “similarity” is represented as an arbitrary distance metric. We note that a man’s

ideal is a woman, and therefore belongs to the woman space. Consequently, the woman space

must capture all of the men’s preferences.

We note that under this formulation, the information that each agent has access to differs

from that in the various formulations used to generate previous results. In these standard

formulations, each agent knows privately their preferences over agents on the other side of

the market. However, no agent knows how they rank in the preference lists of others. In this

formulation, agents effectively have private access to two comparing operators. One of which

takes as input the identities of two potential match partners, and by computing the distance

between the given agent’s ideal and the two identities, the operator can determine which

candidate is preferred by the agent. The other operator that the agent has access to takes as

input the ideals of two potential match candidates, and by computing the distance between

the given agent’s identity and the two ideals, the operator can determine which candidate

prefers the agent more. Thus, agents, to some degree, have access to the preferences of both
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sides of the market.

As an example, consider the scenario where job candidates are being matched to firms.

The job candidate’s ideal is their ideal firm, and their identity refers to themselves. Likewise, a

firm’s ideal is their ideal job candidate, and their identity is themselves. To arrive at a stable

matching, both sides must learn each others identities, so that they may rank matching

candidates, and they must learn each other’s ideals to arrive at a stable match. It is in

this way that we capture the process of preference learning in our model. This allows the

communication complexity to refer to the practical amount of correspondence required to

arise at a stable match.

Our query model also differs from that employed in prior analysis. In standard formula-

tions, one might ask either a series of Boolean queries or a series of integer-response queries

(the latter can be reduced to the former by allowing each bit of the integer response to be

queried separately). In our model, agents may be queried for the information they know

privately: their ideal and identity. However, if we wish for one query to correspond to the

natural communication cost of extracting some information from some agent, it is unrealistic

for the agent to disclose the entirety of their identity or the entirety of their ideal in one

query. In context of our running example, it is unreasonable for a firm to learn the entirety of

the job candidate’s identity within a single correspondence. Instead, the applicant will prob-

ably submit a resume and go through a number of interviews, where in each of the steps,

the firm learns more about the candidate until (in the ideal case), the candidate’s identity

is fully discovered. Thus, we let the information defining the agents’ ideals and identities

be arbitrarily partitioned, and attribute a unit query cost to revealing each block of the

partition. We enforce that all ideals and identities belonging to the man space be partitioned

in the same way. We impose the same restriction for women.

While we formulate our model mathematically in Section 2, we describe it more formally

here. Agents initially know their own ideal and identity as elements of the two metric spaces.
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The structures of the metric spaces (the sets and paired distance operators) are known glob-

ally among the participants. Each of the agents’ ideals and identities are then partitioned

into query-able blocks such that all elements belonging to the same metric space are parti-

tioned in the same way. While the amount of information contained within each block need

not be the same, the practical cost of querying the information within each block should be

the same.

The communication process occurs in two phases: the sketching phase and the query

phase. In the sketching phase, no communication is counted. However, with two globally

known transformations, men/women may transform their identities/ideals to a subspace

of the man space such that the same distance operators continue to indicate preference.

Likewise, the same process is done with elements of the woman space. We call these trans-

formations the men’s sketch and women’s sketch respectively. While the transformations are

globally known, they may not depend on the agents’ identities and ideals, as this would

effectively allow agents to freely communicate. The idea behind the sketching phase is to

reduce the amount of information necessary to communicate an agent’s identity or ideal.

Suppose that we have partitioned an agent’s identity or ideal into k blocks. If we are able to

transform every man’s/woman’s identity/ideal into a subset of man space that can be fully

represented by l < k blocks, then we can reduce the total number of queries necessary. In

the query phase, a server queries the agents for their identities and ideals to find a stable

matching. The server may ask any agent for the value of the ith block of their identity or

ideal. We attribute a unit communication cost for each such query. We choose a server based

model as it establishes a lower bound on the amount of communication required should the

2n agents communicate with each other.

Our use of the terms server and sketch coincide with those used by Chou and Lu in [5].

Indeed, we show that for specific metric space formulations that are of practical significance,

the results of Chou and Lu can be directly applied.

5



2 Preliminaries

2.1 Stability and Matching Markets

Let M and W be disjoint sets of men and women respectively where |M |= |W |= n. Let

a matching µ be a one-to-one mapping between M and W . For each agent i ∈ M ∪W we

define a preference operator �i, where a �i b iff i prefers a over b. We consider only strict

preferences; that is, we do not allow indifferences between matching candidates. For any

agent i ∈M ∪W , we let µ(i) be the agent that i is matched to under µ. A matching µ has a

blocking pair if there exists a tuple (m,w) where m ∈M and w ∈ W such that w �m µ(m)

and m �w µ(w). A stable matching is a matching with no blocking pairs. We let the set

PM = (�m)m∈M ⊂ PM(W ) be the preference profile of the men, where PM(W ) is the set of

all possible preference operators over the set W . We analogously define PW and PW (M) for

the women. A preference profile is complete if every agent prefers being matched over being

unmatched. We consider only complete preference profiles. A matching market is given by

the tuple (M,W,PM , PW ). We denote by n the size of the market (M,W,PM , PW ). In the

stable marriage problem, we aim to find a stable matching µ given some matching market

(M,W,PM , PW ).

2.2 Our formulation

We now formulate mathematically our model described in Section 1.1.

Definition 2.1 (Metric Space). A metric space (S, d) consists of a set S endowed with a

distance function d : S ×S 7→ R≥0 such that the following properties hold for any a, b, c ∈ S
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d(a, b) ≥ 0 (1)

d(a, b) = 0⇐⇒ a = b (2)

d(a, b) = d(b, a) (3)

d(a, c) ≤ d(a, b) + d(b, c) (4)

Property (1) guarantees that the distance between two elements is non-negative. Property

(2) states that if two elements have distance 0, they must be the same element. Property (3)

states that distances are symmetric. Property (4) states that the triangle inequality must

hold.

We define the man space (M, dM) and the woman space (W, dW ) as finite cardinality

metric spaces with arbitrary distance operators. For each agent we let θ : M ∪W 7→ {M,W}

take as input an agent i and returns the set M if i ∈ M and W otherwise. Likewise, we

define φ : M ∪W 7→ {M,W} which takes as input an agent i and returns the set of the

opposite gender (i.e. if i ∈ M , φ(i) = W ). Occasionally (as in the instance directly below),

we will abuse notation and allow φ(i) and θ(i) to return the metric spaces M and W instead

of the sets M and W .

Definition 2.2 (Ideals and Identities). Let identity : M ∪W 7→ M ∪W map each agent i

to an element of θ(i). Let ideal : M ∪W 7→M ∪W map each agent i to an element of φ(i).

In our model, each agent initially knows privately the values of identity(i) and ideal(i). We

now mathematically formalize the partitioning system used in our query system as specified

in Section 1.1. Depending on the size of M or W, the amount of information necessary to

represent the identities and ideals of the agents can vary. We wish to partition each identity

and ideal of each agent into query-able blocks of information such that the practical cost of

querying for each block is the same. We do this by defining index sets for the metric spaces

M and W. We first define the indexing function I(k,v) for k ∈ N and v ∈ Nk which takes
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in a vector v of indices and returns the set given by

I(k,v) =
k∏
i=1

{1, . . . , vi}

Definition 2.3 (Index Set). If for some k,v, I(k,v) ' S, we say that I(k,v) indexes S.

The set I(k,v) indexes a set S if and only if |I(k,v)|=
∏k

i=1 vi = |S| by construction.

Should this be the case, the v vector induces a partition structure on S, partitioning the set

into k blocks. The ith block is given by the ith term in the Cartesian product {1, . . . , vi}. We

can reference some element s ∈ S, by selecting exactly one element from each block. Note

that as we have required M and W to be finite spaces, we can always construct index sets

isomorphic to M and W using the indexing function I.

We use the partition structure induced by an index set in our query model. We require

as input to our model index sets I(kM ,vM) ' M and I(kW ,vW ) ' W. We overload our

notation, and let identity(i, j) for i ∈M∪W and j ∈
{

1, . . . , kθ(i)
}

return the value of the jth

block of agent i’s identity. Likewise, we let let ideal(i, j) for i ∈M ∪W and j ∈
{

1, . . . , kφ(i)
}

return the value of the jth block of agent i’s ideal. The only queries that the server in our

model may make are identity(i, j) and ideal(i, j). Note that as the value of identity(i, j) or

ideal(i, j) can take on one of vθ(i)j or vφ(i)j values respectively, the number of bits required

to send this response is given by log(vθ(i)j) or log(vφ(i)j). However, as the practical cost of

obtaining information from each block is assumed to be the same, we attribute unit cost to

making either of these queries.

As stated, our model is quite general, admitting any partition structures over the metric

spaces (M, dM) and (W, dW ). However, there are a certain family of index sets which are

of practical importance. We call these sets k-unique sets. In a k-unique index set, we let

vi be a function of n = |M |= |W |. The purpose of this is to allow each agent to have,

roughly speaking, unique values in each of the blocks. In our running example of matching

job candidates to firms, suppose that a job candidate’s identity is partitioned by an index set
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into their personality and their ability. In other words, firms may query candidates for their

personality and ability, and once both are known, the firm knows the candidate’s identity

in its entirety. Formally, this would be an index set of the form I(2,v). As both of these

attributes are quite abstract, we would like to allow each job candidate to have unique

representations of their personality and ability. Thus, v1 and v2 should be at least equal n,

the number of job candidates. We formalize this definition below

Definition 2.4 (k-unique set). An index set I(k,v) is a k-unique set if for all vi ∈ v,

vi = poly(n).

We let vi be a polynomial of n as this makes the total amount of information contained

within each block log(vi) = log(poly(n)) = Θ(log(n)) easy to compute. A k-unique set which

we will continue to refer to is the computable real numbers Rc, and its k-fold Cartesian

product Rk
c . The computable real numbers are a finite-cardinality representation of the real

numbers. For example, long variables are 64 bit representations of the real numbers (the

uncountable set is reduced to one of size 264). Suppose we were to uniquely embed n agents

into Rc. We cannot let |Rc| be a constant, as if n exceeds this constant, we cannot allow each

agent to have a unique value. Thus, we let the size of |Rc| grow as an arbitrary polynomial

of n. We likewise define Rk
c as

∏k
i=1Rc. We partition Rk

c in the natural way with the index

set I(k,v) where vi = |Rc|.

2.3 Sketches and Embeddings

We define the space profile as the aggregation of the metric spaces along with the param-

eters that define them.

Definition 2.5 (Space Profile). A space profile S = [M , W , (M, dM), (W, dW ), I(kM ,vM),

I(kW ,vW )] consists of the sets of agents M and W , and the metric spaces (M, dM) and
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(W, dW ) which are indexed by I(kM ,vM) and I(kW ,vW ) respectively. If I(kM ,vM) is kM -

unique and I(kW ,vW ) is kW -unique, we call S a unique space profile.

We define two equivalence relations among space profiles: isometry and transformability.

Two space profiles are isometric if their index sets are identical and their metric spaces are

effectively the same.

Definition 2.6 (Isometry). A space profile S = [M , W , (M, dM), (W, dW ), I(kM ,vM),

I(kW ,vW )] is isometric to a space profile S ′ = [M ′, W ′, (M′, d′M), (W′, d′W ), I(k′M ,v
′
M),

I(k′W ,v
′
W )] if and only if

1. M = M ′ and W = W ′

2. vM = v′M and vW = v′W

3. there exist bijective transformations ϕM : M 7→ M′ and ϕW : W 7→ W′ such that for

all elements x, y ∈ M, dM(x, y) = d′M(ϕM(x), ϕM(y)) and for all elements x, y ∈ W,

dW (x, y) = d′W (ϕW (x), ϕW (y))

We say that two space profiles are transformable if each of the distance metrics can be

written as an invertible function of the other.

Definition 2.7 (Transformability). A space profile S = [M ,W , (M, dM), (W, dW ), I(kM ,vM),

I(kW ,vW )] is transformable to a space profile S ′ = [M ′, W ′, (M′, d′M), (W′, d′W ), I(k′M ,v
′
M),

I(k′W ,v
′
W )] if and only if

1. M = M ′ and W = W ′

2. vM = v′M and vW = v′W

3. there exist isomorphisms ϕM : M 7→M′ and ϕW : W 7→W′
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4. there exist invertible functions τM : R 7→ R and τW : R 7→ R such that for all

elements x, y ∈ M, dM(x, y) = τM(d′M(ϕM(x), ϕM(y))) and for all elements x, y ∈ W,

dW (x, y) = τW (d′W (ϕW (x), ϕW (y)))

Transformability is a strictly more general relation than isometry. Two transformable

space profiles are isometric if and only if τM and τW are the identity maps. We now tie

together everything defined in Section 2.2 in the definition of an instance.

Definition 2.8 (Instance). An instance (S, identity, ideal) consists of a space profile S and

the maps ideal and identity.

We wish for the distance between an agent’s ideal and matching candidate’s identity to

indicate the degree to which the agent prefers that candidate. We formalize this by associating

a preference function and corresponding preference profiles with an instance.

Definition 2.9 (Preference Functions and Profiles). Given an instance X, its corresponding

preference function

PX(i, j) = dφ(i)(ideal(i), identity(j))

returns the distance between the ideal matching partner of an agent i ∈ M ∪W and the

identity of some candidate j ∈ φ(i). We use this function to associate preference profiles

PX
M = (�mX)m∈M and PX

W = (�wX)w∈W with an instance X. For all i ∈M ∪W and j, k ∈ φ(i)

we let

j �iX k ⇐⇒ P (i, j) < P (i, k)

We now define the market embedding which relates the stable marriage problem as defined

in 2.1 with our metric space formulation.

Definition 2.10 (Embedding). An embedding E of a matching market (M,W,PM , PW ) is

an instance that satisfies the conditions PE
M = PM and PE

W = PW .
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We say that a space profile S admits a matching market (M,W,PM , PW ) iff there exists

some maps identity and ideal such that instance (S, identity, ideal) is an embedding of

that market. We call space profiles that admit all size-n matching markets n-complete space

profiles.

In our communication model, we have two phases: the sketching phase and the query

phase. In Section 2.2, we specified the nature of the nature of the queries that the server may

make. The sketching phase occurs prior to the query phase. In this phase, agents transform

their identities and ideals into subspaces of M and W so as to compress the information they

have into fewer query blocks. The preference profile may change under the transformation,

but the set of stable matchings given the altered preference profile must remain the same.

We formalize this mathematically below.

Definition 2.11 (Sketch). Let S be a n-complete space profile. Let `M ≤ kM and `W ≤ kW .

Let uM =
(
vMf(i)

)`M
i=1

and uW =
(
vWg(i)

)`W
i=1

for f, g : N 7→ N be subsequences of vM and vW

of lengths `M and `W respectively. A sketch (TM , TW )S of S is a tuple of transformations

TM : M 7→ SM and TW : W 7→ SW such that the following hold:

1. SM ' I(`M ,uM) and SW ' I(`W ,uW )

2. Let S ′ be the space profile given by [M , W , (SM , dM), (SW , dW ), I(`M ,uM), I(`W ,uW )].

Let c = (identity, ideal) be an arbitrary tuple of identity and ideal maps. We denote

by

Oc = (S, identity, ideal)

the original instance given by c and the original space profile S. Similarly, we denote

by Xc the transformed instance given by

Xc = (S ′, Tθ ◦ identity, Tφ ◦ ideal)

generated by transforming the ideals and identities of the agents by TM and TW . We

enforce that for all c, the set of stable matchings given the market (M,W,PXc
M , PXc

W )
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must be identical to the set of stable matchings given the market (M,W,POc
M , POc

W ).

In the above definition, we compress the identities of the men and the ideals of the women

into `M ≤ kM query blocks. Likewise, we compress the identities of the women and the ideals

of the men into `W ≤ kW query blocks. We select which `M and `W query blocks we compress

to using the subsequences uM and uW . Sketches are weaker constructions than embeddings

as we do not require the induced preference profiles (PXc
M , PXc

W ) to be the same as (POc
M , POc

W ).

Furthermore, the transformed space profile S ′ is not required to be n-complete. We let the set

of all preference profiles PXc
M induced by the set of transformed instances Xc be P(TM ,TW )S

M .

Likewise, we let the set of all PXc
W be P(TM ,TW )S

W . These two sets denote the condensed sets

of preference profiles admitted by S ′ after transforming the identities and ideals of each of

the agents in accordance with the sketching transformations.

In a real-world context, sketches represent systems like application processes. The ob-

jective of an application process is to encode an applicant’s identity into a condensed form.

This compression may alter the preference profiles of the agents. However, in the ideal case,

the set of stable matchings remains the same.

3 Computing the Communication Complexity

In this section, we show bounds on the communication complexity of stable matching in

our formulation (both in the sketching and query phases). We also prove facts about space

profiles that relate to real-world matching mechanisms.

3.1 Restrictions on n-complete Space Profiles

We characterize the nature of n-complete space profiles. Recall that these space profiles

must admit all matching markets (M,W,PM , PW ) of size n. We accomplish this by showing
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bounds on the parameters of the index sets I(kM ,vM) and I(kW ,vW ). We then extend our

results to the realistic case where S is a unique space profile.

We begin by characterizing the index vectors vM and vW .

Lemma 3.1. If S is a n-complete space profile, then
∑kM

i=1 log(vMi) = Ω(n log(n)) and∑kW
i=1 log(vWi) = Ω(n log(n)).

Proof. Let Pn denote the set of possible preference profiles PM (or identically PW ) in a match-

ing market of size n. As each preference operator induces an ordering among n matching can-

didates, there are n! such preference operators. It follows that |Pn|= (n! )n. Thus, the number

of bits contained within a given preference profile is given by log ((n! )n) = Θ(n2 log(n)).

We further note by construction that for any embedding E = (S, identity, ideal), elements

of the metric space W fully determine the preference profile PE
M , and identically, elements of

the metric space M fully determine the preference profile PE
W . Thus, the total number of bits

H necessary to store the n ideals of agents on one side of the market and the n identities of

agents on the other side of the market must be equal to Ω(n2 log(n)).

We show the computation of H for elements of the metric space W. The argument

is symmetric for elements of M. As |W|=
∏kW

i=1 vWi, the number of bits contained within

an element of W is given by log
(∏kW

i=1 vWi

)
=
∑kW

i=1 log(vWi). As we are given n male

ideals and n female identities, we are given 2n elements of W. Thus, we have that H =

2n
∑kW

i=1 log(vWi) = Ω(n2 log(n)). The desired result
∑kW

i=1 log(vWi) = Ω(n log(n)) follows.

We extend this result to unique n-complete space profiles.

Corollary 1. If S is a unique n-complete space profile, then kM = Ω(n) and kW = Ω(n).

Proof. Given k-unique index sets I(kM ,vM) and I(kW ,vW ),
kM∑
i=1

log(vMi) =

kM∑
i=1

Θ(log(n)) = kMΘ(log(n))
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Likewise,
∑kW

i=1 log(vWi) = kWΘ(log(n)). Lemma 3.1 gives us that kMΘ(log(n)) = Ω(n log(n)).

Dividing by log(n), we get our desired result kM = Ω(n), and identically, kW = Ω(n).

Corollary 1 has tangible real-world significance. Suppose agents determine their prefer-

ences by analyzing k different attributes about each potential match candidate. Furthermore,

suppose that, to some degree, candidates may have unique values for each of the attributes.

Corollary 1 tells us that if we wish for every preference profile to be realizable in this system,

the number of attributes k to be considered must be asymptotically at least equal to the

number of match candidates. This is a completely unrealistic condition to impose from a

practical perspective. Thus, it is likely that many preference profiles cannot be realized in

real-world markets.

3.2 The Sketching Phase

We now utilize the results from Chou and Lu in [5] to show bounds on the effectiveness

of sketches (as defined in Section 2.3) in reducing the communication complexity of stable

matching.

We restate Theorem 1 from [5] in the language of Section 2.

Theorem 3.2 (Chou and Lu). Let (TM , TW )S be a sketch of a n-complete space profile

S. The number of bits that a preference profile PXc
M ∈ P(TM ,TW )S

M (or identically, a profile

PXc
W ∈ P

(TM ,TW )S
W ) contains must be at least n log(n! ).

Theorem 3.2 allows us to extend our results from Section 3.1 to sketches. Recall that in

a sketch, we transform the identities and ideals of the agents to subsets of the spaces M and

W that can be indexed by fewer query blocks. Furthermore, we don’t require the induced

preference profiles under the transformation to be the same as the original one. Instead, we

only require that the set of stable matchings remain invariant under the transformation.

We first prove the analog of Lemma 3.1 for sketches.
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Lemma 3.3. Let (TM , TW )S be a sketch of a n-complete space profile S. Let S ′ be the

corresponding transformed space profile.
∑`M

i=1 log(uMi) = Ω(n log(n)) and
∑`W

i=1 log(uWi) =

Ω(n log(n)).

Proof. By Theorem 3.2, we have that the total number of bits H necessary to store the

n transformed ideals of agents on one side of the market and the n transformed identities

of agents on the other side of the market must be equal to Ω(n2 log(n)). We show the

computation of H for elements of the metric space SW . The argument is symmetric for

elements of SM . As |SW |=
∏`W

i=1 uWi, the number of bits contained within an element of

SW is given by log
(∏`W

i=1 uWi

)
=
∑`W

i=1 log(uWi). As we are given n transformed male ideals

and n transformed female identities, we are given 2n elements of SW . Thus, we have that

H = 2n
∑`W

i=1 log(uWi) = Ω(n2 log(n)). The desired result
∑`W

i=1 log(uWi) = Ω(n log(n))

follows.

We now show the corresponding corollary for unique space profiles.

Corollary 2. Let (TM , TW )S be a sketch of a unique n-complete space profile S. Let S ′ be

the corresponding transformed space profile. `M = Ω(n) and `W = Ω(n).

Proof. As S is a unique space profile and uM and uW are subsequences of vM and vW

respectively, S ′ must also be a unique space profile. Given k-unique index sets I(`M ,uM)

and I(`W ,uW ),
`M∑
i=1

log(uMi) =

`M∑
i=1

Θ(log(n)) = `MΘ(log(n))

Likewise,
∑`W

i=1 log(vWi) = `WΘ(log(n)). Lemma 3.3 gives us that `MΘ(log(n)) = Ω(n log(n)).

Dividing by log(n), we get our desired result `M = Ω(n), and identically, `W = Ω(n).

Corollary 2 leads to a profound but unfortunate conclusion about real-world markets.

Suppose again that agents’ preferences are determined by k different attributes about each

potential match candidate. Furthermore, suppose that, to some degree, candidates may have
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unique values for each of the attributes. Corollary 2 tells us that if agents estimate their

preferences by considering ` < k attributes where ` is not asymptotically at least equal to

the number of potential match candidates, then a match that is stable according to their

estimated preferences may not be stable according to their true preferences. As in practice,

even in stable matching mechanisms such as the National Residency Matching Program,

agents likely do not consider Ω(n) attributes about each candidate, it is quite possible that

their estimated preferences lead to an unstable match.

3.3 The Query Phase

We now show that in unique space profiles, a server that can actively query for ideal(i, j)

and identity(i, j) must make Θ(n2) queries in order to find a stable matching. Again, we

adapt a result from Chou and Lu in [5] to prove this statement.

We restate Theorem 3 from [5].

Theorem 3.4 (Chou and Lu). Any server which outputs a stable matching must receive

Θ(n2 log(n)) bits of information.

We build on this to get the desired result.

Corollary 3. Given an embedding (S, identity, ideal) where S is a unique space profile, a

server must make Θ(n2) queries of the type ideal(i, j) and identity(i, j) to output a stable

matching.

Proof. As S is a unique space profile, the server receives Θ(log(n)) bits from any query of

the type ideal(i, j) or identity(i, j). If Q is the total number of queries the server must make,

we have by Theorem 3.4 that QΘ(log(n)) = Θ(n2 log(n)). Dividing by log(n), we get that

Q = Θ(n2).

17



Corollary 3 tells us that even under this more realistic, and seemingly more relaxed model,

Θ(n2) queries are still required to compute a stable matching. Thus, even in practice, finding

a stable matching requires a lot of communication.

4 Converting Stretches to Sketches

One advantage of the metric space formulation is that it allows us to analyze the process

of preference learning in detail. In this section, we analyze the effects of miscommunication

on stable matching. In real-world markets, when one agent asks another (perhaps through

an interview or an application) for the value of identity(i, j) or ideal(i, j), it is likely that the

response will be misreported or misinterpreted in some way. The purpose of this analysis is to

quantify the amount of miscommunication that may occur while still ensuring that the set of

resultant stable matchings remains the same. We first compute this bound for unique space

profiles where (M, dM) and (W, dW ) are isometric to computable Euclidean space (Rk
c , ‖·‖2)

(the computable real numbers are defined at the end of Section 2.2). Next, we extend these

results to more general families of metric spaces. Lastly, we analyze the limit behavior of

these bounds in the context of real-world markets.

We begin by formally defining miscommunication. Intuitively, a miscommunication is

much like a sketch: we transform each of the identities and ideals while ensuring that the

resultant set of stable matchings is invariant under the transformation. Thus, we use the

sketch framework to define miscommunication.

Definition 4.1 (Miscommunication Sketch). Let (TM , TW )S be a sketch of a n-complete

space profile S. Let c = (identity, ideal) be an arbitrary tuple of identity and ideal maps. Let

Xc be the transformed instance and Oc be the original instance. If for all tuples c, agents

i ∈M ∪W , and match candidates j ∈ φ(i),

(1− ε)POc(i, j) ≤ PXc(i, j) ≤ (1 + ε)POc(i, j)
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then we say that (TM , TW )S is a miscommunication sketch. We call ε the stretch factor of

the miscommunication sketch.

In the miscommunication sketch, TM and TW denote the transformations that offset the

agents’ identities and ideals. We quantify the amount of miscommunication by introducing

the stretch factor ε, which measures the maximum distortion in the distance between an

agent’s ideal and a matching candidate’s identity.

We first bound the stretch factor ε in the case where the unique n-complete space profile S

is isometric to the space profile SR = [M , W , (RkM
c , ‖·‖2), (RkW

c , ‖·‖2), I(kM ,vM), I(kW ,vW )]

(isometry between space profiles is defined in Section 2.3). We generate this bound by showing

that if the stretch factor exceeds the bound, we can construct a miscommunication sketch

with that stretch factor that contradicts Corollary 2. In other words, if the stretch factor

becomes too large, we can devise a representation of the agents’ identities and ideals that

can be stored in fewer bits than the bound given by Chou and Lu in Theorem 3.2. Thus, the

resulting set of stable matchings may not be invariant under the set of transformations.

The sketch transformations that we use to reach the contradiction are given by a variant

of the Johnson-Lindenstrauss transform (defined in [10]). Building off the JL transform,

Matoušek proved the existence of a linear transformation that maps points to a subspace of

lower dimension while ensuring that no pairwise distance is distorted beyond a set stretch

factor ε. We define it below.

Definition 4.2 (JL Transform Variant). Suppose there are n points in Rk. In [11], Matoušek

shows the existence of a transformation TJL : Rk 7→ R
C
ε2

log(n) such that for all
(
n
2

)
pairs (i, j)

of points,

(1− ε)‖i− j‖2 ≤ ‖T (i)− T (j)‖2 ≤ (1 + ε)‖i− j‖2

We use the transformation TJL to construct a sketch for space profiles S isometric to SR.

Definition 4.3 (Isometric JL Sketch). Let S be isometric to SR. The isometric JL sketch
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(T IJLM , T IJLW )S is given by

• T IJLM = ϕ−1M ◦ TJL ◦ ϕM

• T IJLW = ϕ−1W ◦ TJL ◦ ϕW

where ϕM and ϕW are the bijective maps satisfying the isometry condition.

We use the isometric JL sketch to show our first result.

Theorem 4.1. Let S be a space profile isometric to SR. If pairwise distances are distorted

by a miscommunication sketch (TM , TW )S with a stretch factor ε, then ε = O

(√
log(n)
n

)
Proof. We generate our bound by considering the sketch (T IJLM , T IJLW )S . By Definition 4.2,

`M = `W = C
ε2

log(n). By Corollary 2, `M = Ω(n) = `W . Thus, we have that log(n)
ε2

= Ω(n).

The desired result ε = O

(√
log(n)
n

)
follows.

Corollary 4. Let S be a space profile isometric to SR. If pairwise distances are distorted by

a miscommunication sketch (TM , TW )S with a stretch factor ε, then limn→∞ ε = 0

Theorem 4.1 and Corollary 4 again lead to a profound but unfortunate conclusion about

real-world markets. Suppose that agents’ preferences are determined by computing some

analog of Euclidean distance between their ideal match partner and a match candidate’s

identity. As the number of market participants increase, the extent to which identities and

ideals are misreported or misinterpreted must decrease, falling to 0 in the limit case. As this

is not a trend that holds true in practice, miscommunication can lead to unstable matchings,

even when stable matching mechanisms are used.

We extend these results to the more general case where the n-complete unique space

profile S is transformable to SR (we define transformability in Section 2.3). Just as we did

in the isometric case, we define the transformable JL sketch.
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Definition 4.4 (Transformable JL Sketch). Let S be transformable to SR. The transformable

JL sketch (T TJLM , T TJLW )S is given by

• T TJLM = ϕ−1M ◦ TJL ◦ ϕM

• T TJLW = ϕ−1W ◦ TJL ◦ ϕW

where ϕM and ϕW are the isomorphisms between the two spaces.

Theorem 4.2. Let S be a space profile transformable to SR. If pairwise distances are dis-

torted by a miscommunication sketch (TM , TW )S with a stretch factor ε, then limn→∞ ε = 0.

Proof. As in the isometric case, we consider the sketch (T TJLM , T TJLW )S . However, as the

distance metrics are now transformed by the τM and τW maps, the stretch factor given by

the JL transform variant is not equal to the stretch factor of the sketch (T TJLM , T TJLW )S . We

compute the transformed stretch factor for elements of the metric space W. The argument is

symmetric for elements of the metric space M. Let ε′ be the stretch factor of the JL transform

variant. From Definitions 4.1, 4.2 and 4.4, we have that

(1− ε′)τ−1W (POc(m,w)) ≤ τ−1W (PXc(m,w)) ≤ (1 + ε′)τ−1W (POc(m,w))

which we can rewrite as

τW ((1− ε′)τ−1W (POc(m,w))) ≤ PXc(m,w) ≤ τW ((1 + ε′)τ−1W (POc(m,w)))

Compare this with the definition of the stretch factor from Definition 4.1

(1− ε)POc(m,w) ≤ PXc(m,w) ≤ (1 + ε)POc(m,w)

Setting the left sides of both statements equal, we have that

(1− ε)POc(m,w) = τW ((1− ε′)τ−1W (POc(m,w)))

Taking τ−1W on both sides we get

τ−1W ((1− ε)POc(m,w)) = (1− ε′)τ−1W (POc(m,w))

which we can rearrange as

ε′ = 1− τ−1W ((1− ε)POc(m,w))

τ−1W (POc(m,w))
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Invoking Corollary 4, we have that limn→∞ ε
′ = 0. Thus, we have that

τ−1W ((1− limn→∞ ε)POc(m,w))

τ−1W (POc(m,w))
= 1

by taking the limit of both sides and moving the 1 over to the other side of the equation.

The above is only true when 1− limn→∞ ε = 1. The desired result limn→∞ ε = 0 follows. The

argument is symmetric in the case that we set the right hand terms to be equal, or if we

considered elements of M instead of elements of W.

As transformability is a very general relation between space profiles, Theorem 4.2 moti-

vates the idea that in any practical scenario, shifts in the agents’ preference profiles due to

miscommunication among the agents can cause match instabilities.

5 Infinite Set Embeddings

In Sections 3 and 4, we dealt exclusively with finite metric spaces. In this section, we

extend our discussion to metric spaces with infinite elements. We show that in space profiles

with metric spaces of infinite cardinality, we can construct a sketch (TM , TW )S such that

`M = Θ(1) = `W . We subsequently show that only Θ(n) queries are required to find a stable

matching in this case.

At the moment, these are still conjectures, since I haven’t had the time to

finish the proofs. The general idea behind these statements is that the finite

Cartesian product of an infinite set is isomorphic to the set itself (e.g. Nk ' N

and Rk ' R), so we can use these isomorphisms to construct the sketch.
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