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Abstract

Kidney exchanges allow patients with end-stage renal dis-
ease to find a lifesaving living donor by way of an organized
market. However, not all patients are equally easy to match,
nor are all donor organs of equal quality—some patients are
matched within weeks, while others may wait for years with
no match offers at all. Knowledge of expected waiting time
and organ quality affects medical and insurance decisions.
This work presents a principled method to estimate the ex-
pected quality of the kidney that a specific patient who en-
ters an exchange will receive, as well as how long it will
take to find that match. Estimation is performed via a novel
Bayesian-optimization-based approach that learns a model of
a computationally complex underlying Monte Carlo simula-
tor. With a limited number of expensive simulation trajecto-
ries, the model produces practically-applicable results. Such
fast and accurate sampling could provide medical profession-
als near-instantaneous access to valuable insight regarding a
patient’s expected outcome in a kidney exchange system.

1 Introduction
Renal disease affects millions of people worldwide, with a
societal burden comparable to diabetes (Neuen et al. 2013).
A patient with end-stage renal failure requires one of two
treatments to stay alive: frequent and costly filtration & re-
placement of their blood (dialysis), or the reception of an
organ transplant from a donor with one or more healthy
kidneys. The latter option is often preferable due to in-
creased quality of life and other health outcomes (San-
tos et al. 2015). Donor kidneys are obtained from one of
three sources: the deceased donor waiting list, where cadav-
eric kidneys are harvested from deceased donors with still-
healthy kidneys; ad-hoc arrangements between a compatible
living donor and a patient; and, recently, kidney exchanges
– an organized market where patients swap willing donors
with other patients (Roth, Sönmez, and Ünver 2004; 2005a;
2005b). Kidney exchanges, while still quite new, result in in-
creased numbers and quality of transplants (Sönmez, Unver,
and Yenmez 2017); furthermore, their design is a success
story for fielded AI research (Abraham, Blum, and Sand-
holm 2007; Ashlagi and Roth 2014; Anderson et al. 2015;
Dickerson and Sandholm 2015; Hajaj et al. 2015; Toulis and
Parkes 2015; Manlove and O’Malley 2015).

The act of getting a kidney transplant is time-sensitive,
and affects healthcare and lifestyle decisions; furthermore,

the expected quality of the kidney—if any—received by
a patient affects the decision to accept or reject a partic-
ular match offer, and may be used to (de)prioritize pa-
tients in a matching mechanism (Bertsimas, Farias, and
Trichakis 2013). Thus, decision-support systems that incor-
porate donor and patient features and quantify or predict the
value of a current or future offered kidney are valuable to
practitioners. The Kidney Donor Profile Index (KDPI) (Rao
et al. 2009) and the Living Kidney Donor Profile Index
(LKDPI) (Massie et al. 2016) are well-known and used to as-
sess deceased- and living-donor kidneys, respectively. How-
ever, no method (nor system) currently exists to find the ex-
pected quality of a donated kidney in a kidney exchange.

This paper presents a Bayesian-optimization-based sys-
tem that takes as input features of a patient and their paired
donor, and returns an estimate of (i) the expected quality of
a match, and (ii) expected waiting time for a matched kid-
ney offer. The use of modern tools from machine learning
and combinatorial optimization is required due to the NP-
hard and APX-hard nature of even the most basic problems
in kidney exchange (Abraham, Blum, and Sandholm 2007;
Biró and Cechlárová 2007; Biró, Manlove, and Rizzi 2009;
Luo et al. 2016; Jia et al. 2017). Our method uses a realistic
but expensive black-box Monte Carlo simulator to produce
estimates of match quality and time-to-match for a specific
patient and donor; it samples new points in the space in-
telligently, balancing overall computational time with the
accuracy of prediction for a new patient and donor. This
prediction can be done in real or near-real time, a require-
ment for such a decision-support system. We give a proof-
of-concept implementation on a reduced but realistic set of
features in the kidney-exchange setting, and show that the
method learns the necessary functions well.

2 Preliminaries
We now overview terminology for the allocation of kidneys
(§2.1) and the standard model of kidney exchange (§2.2).

2.1 Deceased- & Living-Donor Kidney Allocation
Our motivation in this paper is, in part, due to the widespread
usage of the Kidney Donor Profile Index (KDPI) to quantify
the value of deceased-donor kidneys, and the increasing use
of the new Living Kidney Donor Profile Index (LKDPI) to
quantify the value of living-donor kidneys (Rao et al. 2009;
Massie et al. 2016). Roughly speaking, both the KDPI and



the LKDPI are metrics used to compute the expected life-
time (quality) of a kidney that is donated from a donor D to
a patient P . Both are based on multivariate Cox Regression
models adapted from the traditional statistics literature (Cox
1992). The LKDPI metric was constructed such that LKDPI
scores can be directly compared with KDPI scores, thus
allowing direct comparison between living donor and de-
ceased donor options. We expand this metric of quality to
fielded kidney exchange. Unlike a standard ad-hoc living-
donor donation, in a donation through a kidney exchange,
the features of the end donor are unknown, and are gener-
ated through a stochastic matching process. We aim to com-
pute the expected LKDPI of the kidney received through
kidney-paired donation, and the expected matching time that
it would take to receive this kidney, in order to allow for
comparison between the living donor, deceased donor, and
kidney-paired donation options. Because we build on the
LKDPI metric here, we restate its calculation next:
LKDPI(D,P ) =− 11.30

+ 1.85 ∗ [(Dage − 50) if Dage > 50]

− 0.381 ∗DeGFR

+ 1.17 ∗DBMI

(+22.34 if Dis African-American)

(+14.33 if Dhas history of cigarette use)

+ 0.44 ∗Dsystolic blood pressure

(−21.68 if D and P are both male)
(+27.30 if D and P are ABO incompatible)
(−10.61 if D and P are unrelated)

+ 8.57 ∗ (#HLA-B mismatches)
+ 8.26 ∗ (#HLA-DR mismatches)

− 50.87 ∗
[
min

(
Dweight

Pweight
, 0.9

)]
(1)

Here, the estimated glomerular filtration rate (eGFR),
body mass index (BMI), blood type (ABO) compatibility,
and human leukocyte antigen (HLA) are all integral or real
values determined by physical medical testing.1

2.2 The Formal Kidney-Exchange Model
The most-used model represents a kidney exchange as a
directed graph G = (V,E), called a compatibility graph.
Here, each patient and their paired donor who enter the pool
are represented as a single vertex. Then, a directed edge is
drawn from vertex vi to vertex vj if the patient at vertex
vj wants the donor kidney of vertex vi. Weights we ∈ R
represent the utility of an individual kidney transplant repre-
sented by an edge e, and are also used to (de)prioritize spe-
cific classes of patient (Dickerson, Procaccia, and Sandholm
2014; UNOS 2015).

1While we direct the reader to the medical literature for a full
explanation of all variables in this equation (Massie et al. 2016),
we overview ABO compatibility here. At a high level, blood is par-
titioned into four types: O, A, B, and AB. Blood type O, known as
the “universal donor” type, can be donated to patients of any other
blood type. Blood types A and B can be donated to types A and
B, respectively, along with type AB; blood type AB can be donated
only to those of type AB. A donor whose blood type can be donated
to a patient is said to be an ABO compatible donor.

Kidney exchanges rely on one of two types of structures to
match patients: cycles and chains. First, a k-cycle c consists
of exactly k patient-donor pairs (vertices), each connected
by an edge in a cycle; here, each pair in c receives the kidney
from the previous pair. Second, a k-chain begins with a non-
directed donor, who enters the pool without a patient and
gives their kidney to a patient with a paired donor, who gives
to another patient with a paired donor, and so on k times.2
Modern exchanges derive the majority of their utility from
chains (Montgomery et al. 2006; Rees et al. 2009; Anderson
et al. 2015; Ashlagi et al. 2017).

A matching M is a set of disjoint cycles and chains in a
compatibility graph G; M ∈ M, the set of all legal match-
ings. No donor can give more than one of her kidneys, ne-
cessitating the disjointness of cycles and chains—although
recent work explores multi-donor donation (Ergin, Sönmez,
and Ünver 2017; Farina, Dickerson, and Sandholm 2017).
Given the set of all legal matchingsM, the clearing problem
finds the matching M∗ that maximizes utility function u :
M → R (e.g., for maximum weighted matching, u(M) =∑

c∈M
∑

e∈c we). Formally: M∗ ∈ argmaxM∈M u(M).
Ongoing research in the AI/Economics literature uses util-
ity functions to enforce incentive properties via mechanism
design (Ashlagi and Roth 2014; Li et al. 2014; Hajaj et al.
2015; Blum et al. 2017; Mattei, Saffidine, and Walsh 2017).

Finding a maximum weight (capped-length) cycle and
chain packing is NP-hard (Abraham, Blum, and Sandholm
2007; Biró, Manlove, and Rizzi 2009), and is also hard to
approximate (Biró and Cechlárová 2007; Luo et al. 2016;
Jia et al. 2017). In practice, integer program (IP) formula-
tions are used to clear large exchanges (Abraham, Blum, and
Sandholm 2007; Dickerson, Procaccia, and Sandholm 2013;
Glorie, van de Klundert, and Wagelmans 2014; Ander-
son et al. 2015; Dickerson et al. 2016). Formally, denote
the set of all legal chains of length at most K and cy-
cles of length at most L by C(L,K). Then, solve the IP:
max

∑
c∈C(L,K) wc xc subject to

∑
c:v∈c xc ≤ 1 ∀v ∈ V ,

where xc ∈ {0, 1} is a variable for every c ∈ C(L,K), and
wc =

∑
e∈c we. The final matching is the set of chains and

cycles c such that xc = 1. We use this IP as a sub-solver.
The kidney-exchange system is dynamic. In each itera-

tion, new patients enter the pool, current patients may leave
due to competition from other methods for receiving a kid-
ney or death, and edges may appear or disappear based on
the health characteristics of participants (e.g., pregnancy or
sickness, leading to a change in compatibility with potential
donors). We simulate this complex dynamic process in our
work; additional details are given in Section 4. The match-
ing process is highly stochastic. In fielded kidney exchanges,
matches are made without detailed knowledge of compat-
ibility between a donor and patient. More-thorough phys-
ical crossmatch tests are done after an algorithmic match,
but before the actual transplantation event, to ensure that a
matched donor can donate to a paired patient. Even one fail-

2In fielded kidney exchanges, cycles are limited in size to, typ-
ically, 3; all surgeries in a cycle must be executed simultaneously,
so longer cycles are nearly impossible to plan. Chains, however,
can be much longer (or effectively endless) in practice.



ure of an edge in a cycle invalidates the entire cycle; sim-
ilarly, given the incremental execution of chains, all poten-
tial transplants located after the first edge failure in a chain
are invalidated. This stochasticity, in addition to the dynamic
process of patients and donors entering and leaving the sys-
tem, introduces significant noise into the system.

3 Estimating Functions of Expensive
Stochastic Processes

We now specify our model for quantifying the quality of an
organ, as well as our method for predicting the expected
quality of that organ given a black box exchange simula-
tor. As defined, the model and method are applicable to any
function of a stochastic simulatable process; however, given
our application, we motivate the model in the context of kid-
ney exchange. We employ kidney exchange as a running ex-
ample to explain notation and concepts.

Consider a stochastic process S(I) → M which pro-
duces output samples M given some input features I. Let
I ∈ I,M ∈ M, where I denotes the input space and M
denotes the output space.

Example 1 Let S denote the kidney-exchange process,
briefly described in Section 2, and defined in depth in Sec-
tion 4. We compute samples from S by constructing a realis-
tic simulator. Let I denote the feature set of a patient-donor
pair that enters the system. Let M be a set containing the
feature set of the donor that gets matched to the patient of I,
as well as the total time for I to be matched.

We say a function f has additive structure if, for some
k ∈ N, it can be decomposed into constituent functions fk
such that f(x) =

∑
k fk(x), for all valid inputs x. Note that

by this definition, all functions are additive for k = 1.
Consider some stochastic additive function f(I,M|I),

with M and I as defined above. The notation M|I is used
to show that M is not a real input to the function—the func-
tion depends only on I as M = S(I). However, to compute
f , we require samples of M. Let F (I) = E[f(I,M|I)].
Example 2 In our running example, assign f(I,M|I) :=
LKDPI(M|I, I). That is, f simulates an exchange system
and returns the LKDPI of the kidney that the patient of the
patient-donor pair I receives through that matching pro-
cess. Note that by the LKDPI formula, f is an additive
function. Thus, F (I) returns E[LKDPI(M|I, I)]. Let t(I)
be a stochastic function that returns the matching time for
patient-donor pair I, and T (I) = E[t(I)]. While, due to the
complexity of the underlying exchange process, the t func-
tion does not decompose as easily into additive components,
we treat it as an additive function with only one component.
We aim to quickly—e.g., while waiting in a doctor’s office—
approximate, and provide patients, with accurate estimates
of expected quality F (I) and expected matching time T (I),
given membership in a patient-donor pair with features I.

The naı̈ve method to estimate the expected value F of
such a function f is to, for every I, to simulate S(I) for
a sufficient number of trajectories, and take a sample av-
erage as an estimate of F (I). However, this becomes in-
tractable quickly if S simulates a sufficiently noisy and/or

time-consuming process. In our setting, output samples of
M are very noisy, and even the basic matching policy de-
scribed in Section 2 is intractable if a sufficient number of
samples are taken to accurately compute F (I) and T (I).
This estimation strategy becomes even less feasible if more-
advanced dynamic matching policies that use reinforcement
learning methods (Dickerson and Sandholm 2015) are used,
which increase simulation (and thus sample) time.

We place no constraints on the fk above: thus, trying
to learn discontinuous F directly is hard. We note that
F also has an additive structure. We exploit this additive
structure to effectively learn F : by the linearity of expec-
tation, F (I) = E[f(I,M|I)] = E [

∑
k fk(Ik,Mk|Ik)] =∑

k E[fk(Ik,Mk|Ik)] =
∑

k Fk(Ik). Here, Mk ⊆
M, Ik ⊆ I, and both Ik and Mk are of the smallest size
possible. Note that while elements of Mk can be reduced to
only those that are required for computing fk, the elements
of Ik must be sufficient to compute Mk and fk. In other
words, if Ik 6= I, it must be a property of S that the elements
of I \ Ik do not alter the joint distribution p(Mk) over the
elements of Mk. Not all Fk are equally difficult to estimate.
Consider the case where no elements of I change p(Mk). If
this occurs, we can estimate Fk by first estimating p(Mk)
by sampling from S and integrating

Fk(Ik) =

∫
· · ·
∫

Mk

fk

(
Ik,
⋃
i

Mi
k

)
p

(⋃
i

Mi
k

)
l∏

i=1

dMi
k

(2)
where Mk =

⋃
i M

i
k. However, Fk need not satisfy this

strict condition, as is in our application and many others.
Next, we present a Bayesian-optimization-based technique
to learn Fk which uses S to generate noisy samples, learns a
model of Fk, and then provides (after learning the model) a
fast approximate-sampling capability to the end-user.

3.1 A Bayesian-Optimization-Based Approach
Bayesian optimization (BO) utilizes Gaussian processes
(GP) to maximize an unknown function—in our case, the
expected output of a realistic, but noisy and expensive to
run, simulator of a real-world process. In BO, an acquisi-
tion function is used to select the next point at which to
sample that would, typically, lead to an accurate estimate
of the maximum of that function. Examples include Ex-
pected Improvement (EI), Lower Confidence Bound (LCB),
and Maximum Probability of Improvement (MPI); Brochu
et al. (Brochu, Cora, and De Freitas 2010) give an in-depth
overview of techniques. A kernel (covariance) function is
used to interpolate between known values of the function,
and determine the confidence at each point. While BO of-
fers a method to maximize a function where getting output
is time consuming, we learn Fk using this method by taking
as output the GP of the BO. We use the Bayesian optimiza-
tion framework to choose informative values of Ik which
will increase our understanding of Fk. More formally, let

fk ∼ GP(µ(Ik), k(Ik, I′k)), (3)

where k(Ik, I
′
k) is a kernel (covariance) function. To learn

a function using BO, we let the acquisition function A(Ik)



return the variance at the point. By equation (3), we have

p(fk(Ik)) = N (µIk , σ
2
Ik
) (4)

We let A(Ik) = σ2
Ik

, and optimize A using the limited-
memory BFGS optimization algorithm (Andrew and Gao
2007). It then follows that Fk(Ik) = µIk .

Accounting for Categorical Variables. The input Ik may
contain some categorical variables (e.g., ABO blood types
take one of four values). Because of this, we cannot directly
apply a GP over Ik, as we cannot fit a kernel over these cate-
gorical variables. Instead, for each permutation of categori-
cal variables, we perform the following scheme over C(Ik),
the subset of Ik containing only non-categorical variables.
We let D(Ik) be the subset containing only the categorical
variables. We can compute Fk as

Fk(Ik) = µ
D(Ik)
C(Ik)

, (5)

where the notation µ
D(Ik)
C(Ik)

denotes the mean at the point
C(Ik) on the GP conditioned on the categorical variables
being set to D(Ik).

Piecewise Functions. A special class of functions fk for
which a GP is not well-suited to model are piecewise func-
tions. Let fk be a piecewise function with c cases.

fk(Ik,Mk|Ik) =


f1k (Ik,Mk|Ik), if C1

k(Ik,Mk|Ik)
f2k (Ik,Mk|Ik), if C2

k(Ik,Mk|Ik)
...

...
f ck(Ik,Mk|Ik), otherwise

where each function Ci
k(Ik,Mk|Ik) is a mutually-exclusive

Boolean-valued function. We use the above scheme to
learn each of the F i

k(Ik) = E[f ik(Ik,Mk)] as well as
Pr[Ci

k(Ik,Mk|Ik)] for 1 ≤ i ≤ c. We compute Fk as

Fk(Ik) =

c∑
i=1

Pr[Ci
k(Ik,Mk|Ik)]F i

k(Ik) (6)

by linearity of expectations.

Example 3 The LKDPI function (1) has several terms de-
fined by piecewise function. One example is the term con-
taining a donor’s BMI. Let the condition AA denote that the
donor is African-American. Let the condition HCU denote
that the donor has a history of cigarette use. We can write
this term as

f3(I3,M3) =


1.17 ∗ (DBMI + 36.67), if AA ∧HCU
1.17 ∗ (DBMI + 22.34), if AA
1.17 ∗ (DBMI + 14.33), if HCU
1.17 ∗DBMI, otherwise

Defining the Kernel. For this application, we use the ra-
dial basis function (RBF) kernel for all GPs, given by

k(Ik, I
′
k) = exp

(
−‖Ik − I′k‖2

2`2

)
. (7)

The kernel is only accurate if the ` length-scale hyperpa-
rameter is properly tuned. We use Hamiltonian Monte Carlo
(HMC) to approximate the probability distribution over `
given the data that we have seen so far (Duane et al. 1987).
HMC is a physics-inspired Markov Chain Monte Carlo
(MCMC) technique. As the underlying distribution over `
is inaccessible, we construct a Markov chain which has an
equilibrium distribution equal to the target distribution over
`. Sampling from this Markov chain allows us to efficiently
explore the typical set of the underlying distribution. What
makes HMC different from other MCMC methods such as
Metropolis-Hastings is its ability to smoothly explore the
typical set without failing due to random-walk behavior (Be-
tancourt 2017). HMC accomplishes this by defining a vector
field over the underlying distribution. Just taking the gradi-
ent of the distribution gives a vector field that points towards
the mode of the distribution. However, we want to make this
vector field guide the Markov chain through the typical set.
This is analogous to a physical system where we have a grav-
itational center, and we are trying to determine the momen-
tum required to carry an object into orbit. We redefine our
terminology in terms of this analogy. We let our position q
be given by a coordinate of the density function. In our im-
plementation of HMC, q = `. The momentum parameter p
is defined as an auxiliary parameter over our density func-
tion p(q), and has the same dimension as q. We call this
augmented space over q and p the phase space.

We choose a conditional distribution p(p | q) because we
can marginalize out the momentum, as

p(q,p) = p(p | q)p(q)
We can write this conditional distribution in terms of an

invariant Hamiltonian function H(q,p) as

p(q,p) = e−H(q,p) (8)

We refer to the value of the Hamiltonian at a given point
within the phase space as the energy at that point. We get

H(q,p) = −log(p(q,p))
= −log(p(p | q))− log(p(q))

≡ K(p,q) + V (q)

(9)

We refer to K as the kinetic energy, and V as the poten-
tial energy. We can generate a vector field oriented with the
typical set using Hamilton’s equations, given by

dp

dt
=
∂H

∂p
=
∂K

∂p

dq

dt
= −∂H

∂q
=
∂K

∂q
− ∂V

∂q

(10)

We let
p(p | q) = N (p | 0,M) (11)

and thus define a Euclidean-Gaussian kinetic energy

K(p,q) =
1

2
pᵀM−1p+ log|M |+ const., (12)

where M is defined by rotating and scaling a matrix of Eu-
clidean inner products. For more information, please see Be-
tancourt (Betancourt 2017). HMC can be used to improve
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Figure 1: Estimating Fk or T (I) using Bayesian optimization

the performance of GP-based applications in general. Stan-
dard length-scale tuning methods involve optimizing p(`) to
find the maximum likelihood value. However, as in (Betan-
court 2017), the maximum-likelihood value can lie far from
elements of the typical set. (Appendix A shows experimen-
tally the negative impact of this on estimation quality.) Thus,
we modify our acquisition function A to compute the ex-
pected value E[σ2

Ik
] over the kernel’s ` distribution:

A(Ik) =

∫ ∞
0

(σ2
Ik
|`)p(`)d` (13)

4 Estimating Match Time and Quality:
Evidence from a Realistic Simulation

In this section, we return to the initial motivation for this
paper—creating a decision support system that quickly and
accurately estimates to a patient and paired donor the ex-
pected waiting time and offered organ quality. Coupled with
the well-known and widely-used KDPI and LKDPI metrics
currently fielded in the deceased-donor and non-exchange-
based living-donor kidney programs, respectively, a princi-
pled translation of those techniques to the more complicated
kidney-exchange setting has the potential for great impact.
This section presents an exploratory validation of our ap-
proach in a reduced, but still realistic, model of kidney ex-
change. We begin by describing that model, including our
feature space and simulator (§4.2), presenting quantitative
results performed on commodity hardware (§4.3), and con-
cluding with a general discussion (§4.4).

4.1 Experimental Setup
We instantiate the model under a simplified kidney-
exchange process.3 In our model, the only factors that af-
fect p(M) in this matching policy are a patient’s blood type,
their potential donor’s blood type, their paired but incompat-
ible donor’s blood type, and the respective CPRA (described
next) of all involved parties (patient, paired donor, poten-
tial donor). Here, the Calculated Panel Reactive Antibodies

3For an in-depth discussion of all features that are currently in-
cluded in a large, real-world kidney exchange due to the United
Network for Organ Sharing (UNOS) in the USA, we direct the
reader to a recent white-paper from that group (UNOS 2015).

(CPRA) is a continuous-valued score in [0, 1], roughly rep-
resenting the fraction of donors, drawn from a general pop-
ulation, that would not be a match for a particular patient
(e.g., a score of 1 signals extreme difficulty in matching).
This simplified feature set implies that the only one of these
factors which appear in the LKDPI formula is patient blood
type. Furthermore, it only appears in the form of a compar-
ison between the matched donor’s blood type and the pa-
tient’s blood type. C(L,K) as mentioned in Section 2 only
contains cycles and chains where the matched donor has the
same blood type as the patient. Thus, all Fk can be com-
puted via (2). We evaluate the BO approach by estimating
the expected matching time T (I). Let I be the space over
the features listed above. To reduce noise in the output of
S, we compute r samples of S(I) in each optimization iter-
ation. We let matches take place on a weekly basis, and cap
the total match-time at 250 weeks; each time period invokes
a state-of-the-art IP-based codebase (Dickerson and Sand-
holm 2015) that solves the NP-hard optimization problem
from Section 2.2.4 We use this sub-solver to clear the kidney
exchange pool at every time period, and simulate the evolu-
tion of the pool—vertices arriving and departing, edges ex-
isting and failing—as in the realistic-kidney-exchange simu-
lation literature (Saidman et al. 2006; Anderson et al. 2015;
Dickerson and Sandholm 2015). Fig. 1 describes the instan-
tiation of the BO approach for LKDPI computation.

4.2 Bayesian Optimization for Match Time
Computation

We use GPyOpt (GPyOpt 2016), an open-source Bayesian-
optimization platform, for implementing our method. We
modified GPyOpt to change the acquisition to return the in-
tegrated expected variance at the point as described in Sec-
tion 3. Then, for all 16 blood-type-pair combinations for
donor-patient pairs who enter the exchange, we performed
Bayesian optimization over patient CPRA for o = 50 iter-

4Code for that base simulator can be found here:
https://github.com/JohnDickerson/KidneyExchange; after the double-
blind review period concludes, we will make public our fork of
their repository that includes all code to replicate experiments in
this paper, including data generation and output parsing.



ations. For each blood-type-pair combination, T (I) is esti-
mated based on r = 48 trajectories in a realistic simulator.

We now experimentally validate the proposed method us-
ing a realistic kidney-exchange simulator and a reduced fea-
ture set, as a proof of concept. There exists no comparable
baseline that can be used to validate our method. Instead,
we show that our model is able to make clinically promising
estimates of the expected waiting time even with noisy (but
inexpensive) input. We further justify our model by compar-
ing the performance of our model to that of several passive
learning models in the Scikit-learn framework (Pedregosa et
al. 2011). In practice, one would include 25-30 features be-
fore making a policy recommendation; however, as §4.3 will
show, even using a reduced feature set validates the method.

After constructing the GPs through BO, we test them
by comparing the match time returned by the GP and
the match time returned by the realistic simulator af-
ter s trajectories. To test the 16 generated GPs, the do-
main of CPRA [0, 1] is partitioned uniformly into 4 zones
{[0, .25), [.25, .5), [.5, .75), [.75, 1)}. In each zone, 5 ran-
dom trials are done, with s = 128 trajectories each. We test
the system with s > r in order to measure the ability of the
model to make good estimations of the expected value even
with more noisy input.

We compare our method to common regression models
using the Scikit-learn framework. Each of these models was
given as input 50 CPRA values selected uniformly at ran-
dom on the domain [0, 1] for each of the 16 blood type com-
binations. We perform 20 iterations of randomized hyperpa-
rameter optimization (see Appendix B for detailed informa-
tion), endowing all relevant hyperparameters with appropri-
ate exponential (or geometric, for discrete variables) distri-
butions. We compare our method against the following mod-
els: random forest regression, isotonic regression, support
vector regression (SVR) with RBF kernel, SVR with poly-
nomial kernel, and multi-layer perceptron. Note that none of
these models are capable of learning the underlying noise
model of the function. In our application, the noise model
is of clinical importance as it allows stakeholders (e.g., doc-
tors, patients, insurance) to know the margin of error on the
expected-waiting-time estimate.

4.3 Experimental Results
Figure 2 shows the estimated expected mean residual of our
estimated function when compared to our simulated test of
the value of that function in weeks, calculated over all blood
type combinations.5 First, the learned function fits the true
(simulated) function quite well, for CPRA values far from
1—within two or three weeks of realized match time. As the
CPRA value approaches 1, the residuals increase; this is to
be expected, because higher CPRA values result in (much)
more uncertainty in the ability to find any match at all. In-
deed, a CPRA of 1 indicates zero probability of finding a
match; in a case like this, waiting time becomes infinite, and
the function to be estimated becomes ill-defined. To prevent
the simulation from taking an indefinite amount of time, we
cap the total match time at 250 weeks.

5Appendix C, Figure 10 presents that data in tabular format.

Figure 2 demonstrates that for the first 3 CPRA zones,
comparative performance among all models tested is
roughly equal. Due to the nature of the kidney exchange pro-
cess, it happens to be that the CPRA zone in which the func-
tion becomes the most stochastic (zone 4) is also the subset
of the domain in which function changes the most. Thus, it
is in this CPRA zone in which we see varied performance.
With the exception of isotonic regression, our method out-
performs the passively learned models. However, we note
that isotonic regression assumes that the function is mono-
tonic and for the general Fk, this is not true. Interestingly,
our method shows very similar performance to the isotonic
regressor even without an assumption of monotonicity. Our
method also learns an underlying noise model, which is of
clinical importance.

Figure 3 shows the mean residual in weeks over CPRA for
the donor-patient blood type combination O-AB. The O-AB
pair is, in some sense, the easiest to match; its donor has the
“universal” blood type O, and its patient has no blood type
constraints. Indeed, we see that the model estimates the wait-
ing time and quality of this “easy” donor-patient pair quite
well. Residuals are small enough that they can be attributed
to the stochasticity in the trials used to test the system.6

Figure 4 shows the mean residual in weeks over CPRA for
the blood type combination AB-O—a “hard” donor-patient
pair. Figure 5 shows the distribution on the function mapping
patient CPRA for that blood type combination in weeks, and
the point at which the acquisition is optimized (the solid ver-
tical red line). We focus on this particular case because the
AB-O pair is a complement to the O-AB pair; while the latter
is easy to match, the former has the most constrained donor
(type AB donors can only give to type AB patients), and the
most constrained patient (type O patients can only receive
from type O donors). This increased difficulty in match-
ing led to increased stochasticity in the result, thus giving
a higher mean residual of between 6 and 12 weeks.

We performed this experiment for all 16 donor-patient
blood types. Figure 2 gives a high-level quantitative
overview of those results; qualitatively, results followed this
visualization. In general, higher CPRA leads to greater un-
certainty. Similarly, harder-to-match (in terms of ABO blood
type) patients as well as donors also lead to greater uncer-
tainty in matching time. However, throughout, our method
was able to learn a close approximation—typically within a
few weeks of the actual matching time—to the underlying
function of interest, all using commodity hardware.

4.4 Discussion
Overall, even with a limited amount of trajectories, the GP
provides accurate predictions of the underlying noisy func-
tion. As a patient’s CPRA increases, the mean residual in-
creases, as the match time output increases in stochastic-
ity with respect to an increase in CPRA. With harder-to-
match blood types (e.g., the AB-type donor, O-patient donor
patient pair), the stochasticity in the result was larger as

6Appendix C, Figure 11 shows the distribution on the estimated
function mapping patient CPRA for the blood type combination O-
AB. We see that uncertainty is quite low, even after only a small
number of (expensive) black box function queries.



Figure 2: Mean absolute resid-
ual (weeks), all blood type pairs,
vs. s = 128 estimates of expected
waiting time.

Figure 3: Mean absolute resid-
ual (weeks), O-AB donor-patient
pair, vs. s = 128 estimates of ex-
pected waiting time.

Figure 4: Mean absolute resid-
ual (weeks), AB-O donor-patient
pair, vs. s = 128 estimates of ex-
pected waiting time.

Figure 5: Our learned GP for AB-
type paired donor and O-type pa-
tient (in weeks), varying patient
CPRA (x-axis).

well, resulting in a higher mean residual. However, as seen
in Fig. 4, the GP is capable of handling this, by estimat-
ing the probability distribution on that value (using a Gaus-
sian prior). Indeed, Fig.s 2 and 10 demonstrate that the GP
with actively-sampled input well outperforms the passively-
learned models in the most stochastic CPRA zone with the
exception of isotonic regression. However, isotonic regres-
sion applies only to monotonic functions. Thus, to a certain
extent, the GP is capable of handling stochastic outputs. We
note that both of these edge cases—patients with extremely
high CPRA, said to be “highly sensitized,” and donor-patient
pairs whose blood types are hard to match (like the AB-
O donor-patient pairs discussed above), and are said to
be “under-demanded,”—have previously received, and con-
tinue to receive, special attention in both the economic and
medical policy literature. For example, the economic liter-
ature suggests that AB-O pairs may never be matched in a
fully efficient matching (Ashlagi and Roth 2014; Toulis and
Parkes 2015), while similarly negative results exist for the
(lack of) opportunity to match highly-sensitized patients un-
der fully efficient matching policies (Dickerson, Procaccia,
and Sandholm 2014; McElfresh and Dickerson 2018). Our
IP-based approach maximizes (short-term) efficiency, so it is
not surprising that the highest variance results for our system
come from the hardest-to-match patients.

While our proof-of-concept demonstrates the promise of
this system in a toy environment, before making a policy
recommendation or deploying a support tool in practice, we
note the following: (i) The number of trajectories r should
be (much) greater, for greatly reduced stochasticity, and thus
far smaller mean residuals from the GP to the realistic sim-
ulator. (ii) The number of features considered should be
much higher, and informed by experts in the field. Yet, given
these proof-of-concept experimental results, we feel confi-
dent that—given all Fk—a decision-support system can be
deployed for use by practitioners, in order to give patients
and their willing donors this information on demand.

5 Conclusions & Future Research
This paper presents a principled method to estimate the ex-
pected quality of the kidney that a specific patient who enters
an exchange will receive, as well as how long it will take to
find that match. Knowledge of expected waiting time and
organ quality affects medical and insurance decisions. Es-

timation was performed via a novel Bayesian-optimization-
based approach that learns a model of a computationally-
complex Monte Carlo simulator, which in turn represents
a potentially discontinuous function. The method presented
generalizes to any function of a stochastic (and expensive)
simulatable process. With a limited number of expensive
simulation trajectories, the model produced reliably accu-
rate results in our proof-of-concept setting, supporting fur-
ther investigation. With access to fast and accurate sampling,
medical professionals could have near-instantaneous access
to valuable insights regarding a patient’s expected outcome
in a kidney exchange system. One research direction is to de-
termine, via a combination of feature selection methods and
expert opinion, the set of features necessary to completely
characterize the expected waiting time and kidney quality
function our method aims to learn. Our model and proof-
of-concept experiments support more-intense computational
experiments. Similarly, one might use the application of
LKDPI presented here to design more socially-beneficial
mechanisms in the face of strategic agents, perhaps incen-
tivizing agents to perform in a specific way to increase so-
cial welfare; this area of research, particularly in the context
of kidney exchange, is still open (Ashlagi and Roth 2014;
Toulis and Parkes 2015; Hajaj et al. 2015; Blum et al. 2017).
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Roth, A.; Sönmez, T.; and Ünver, U. 2005b. Pairwise kidney ex-
change. Journal of Economic Theory 125(2):151–188.
Saidman, S. L.; Roth, A.; Sönmez, T.; Ünver, U.; and Delmonico, F.
2006. Increasing the opportunity of live kidney donation by match-
ing for two and three way exchanges. Transplantation 81(5):773–
782.
Santos, A. H.; Casey, M. J.; Wen, X.; Zendejas, I.; Rehman, S.;
Womer, K. L.; and Andreoni, K. A. 2015. Survival with dialysis
versus kidney transplantation in adult hemolytic uremic syndrome
patients: A fifteen-year study of the waiting list. Transplantation
99(12):2608–2616.
Sönmez, T.; Unver, U.; and Yenmez, M. B. 2017. Incentivized kid-
ney exchange. Tech. report, Boston College Dept. of Economics.
Toulis, P., and Parkes, D. C. 2015. Design and analysis of
multi-hospital kidney exchange mechanisms using random graphs.
Games and Economic Behavior 91(0):360–382.
UNOS. 2015. Revising kidney paired donation pilot program pri-
ority points. OPTN/UNOS Public Comment Proposal.



Appendix for Paper ID: 6191
A Optimizing p(`) versus HMC Sampling: Impact on System Performance

It is common in GP regression to set ` to be the value of maximum likelihood. However, the expected length-scale can deviate
far from the mode. We show some resulting GPs when we ran our experiment as described in Section 4 without using HMC
and instead tuning ` using the value of maximum likelihood. Figures 6 and 7 show the poor prediction results that occur when
the maximum likelihood value of ` falls far above the expectation.

Figure 6: Setting ` too high, patient blood type B, donor blood type
A.

Figure 7: Setting ` too high, patient blood type AB, donor blood type
A.

Likewise, Figures 8 and 9 show the negative effect on performance when the maximum likelihood value of ` falls far below
the expectation.

Figure 8: Setting ` too low, patient blood type B, donor blood type
AB

Figure 9: Setting ` too low, patient blood type AB, donor blood type
B.

HMC allows us to efficiently compute the expectation, thus eliminating this issue.

B Hyperparameter Optimization
We describe in detail the hyperparameter optimization scheme that we used for the models that we used to compare our
method against. We performed 20 search iterations of randomized hyperparameter optimization, where for relevant continuous
(discrete) parameters, we sampled from an exponential (geometric) distribution with expected value approximately equal to the
default value given by the Scikit-learn pipeline. We state these values below. Isotonic regression is not mentioned as there are
no hyperparameters to optimize.



B.1 Random forest regression
We performed random forest regression geometrically distributing the number of regressors with expected value 20

B.2 Support vector regression
For both SVR regressors (RBF and Poly), we let C and γ, the error penalty parameter and kernel coefficient respectively, be
exponentially distributed with expected value 1. Likewise, we let ε, the penalty tolerance constant, be exponentially distributed
with expected value 0.1.

B.3 Multi-layer perceptron
We used the Adam optimizer (Kingma and Ba 2014) and hyperbolic tangent activation function. The MLP was trained for
1000 iterations. We set the learning rate to be constant, exponentially distributed with expected value 0.005. We let α, the L2
penalty regularization term, be exponentially distributed with expected value 0.0001. We let the total number of neurons be
geometrically distributed with expected value 100.

C Additional Experimental Results
In this section, we present additional experimental results that accompany those presented in Section 4 of the main paper. In the
main paper, Figure 2 showed the estimated expected mean residual of our estimated function when compared to our simulated
test of the value of that function in weeks, calculated over all blood type combinations; here, Figure 10 displays that same
information in tabular format, where “zone” numbers correspond to the CPRA zones sorted from least to greatest

Zone RF Iso RBF Poly MLP GP
1 3.18 2.86 2.74 2.18 2.84 3.02
2 3.02 2.37 3.25 2.24 3.04 3.25
3 3.29 2.90 3.37 3.35 4.38 3.97
4 11.01 7.90 28.89 17.69 20.7 8.02

Avg 5.12 4.01 9.56 6.36 7.74 4.57

Figure 10: A tabular display of Fig. 2. Here, “RBF” and “Poly” denote SVR with the RBF and polynomial kernels respectively.

Figure 3 in the main paper explores the specific case of an O-type donor and AB-type patient. Figure 11 shows the distribution
on the estimated function mapping patient CPRA for that blood type combination O-AB in weeks, the acquisition function (in
red) in arbitrary units, and the point at which the acquisition is optimized (the solid red line going down). We see that uncertainty
is quite low, even after only a small number of (expensive) black box function queries. Figure 11 and 12 demonstrate that while
all models had relatively similar performance, for patients with very high CPRA, only our model, random forest regression, and
isotonic regression capture the final upward trend towards 250, the maximum number of match iterations. Figure 13 gives that
same comparison for the AB-type donor, O-type patient class of vertex.

Figure 11: Gaussian process for O-type
paired donor and AB-type patient (in weeks)

Figure 12: Prediction of expected waiting
time (in weeks) by passively learned models
for O-type paired donor and AB-type patient

Figure 13: Prediction of expected waiting
time (in weeks) by passively learned models
for AB-type paired donor and O-type patient


