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Kidney Exchange

Renal disease affects millions worldwide with a societal burden
comparable to diabetes.

Growing demand for donor kidneys is met through the
deceased-donor waiting list, direct donation, and kidney
paired donation (KPD) programs.
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Not all transplants are equal! KDPI and LKDPI metrics
quantify donor risk based on patient and donor features.

Waiting times and odds of match can differ dramatically
depending on a pair’s features.
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Forecasting Patient Outcomes

Can we make KPD programs more transparent by
forecasting patient outcomes?

For a vertex v that represents a patient-donor pair, we aim to
predict

The outcome O(v) — was the vertex matched?

The waiting time W (v) conditioned on O(v) = 1

The quality (LKDPI) Q(v) conditioned on O(v) = 1

Ideally, prediction is fast, only requires data accessible to the
exchange, and gives confidence estimates.
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A Simple Approach

We propose a simple random-forest approach to infer
(O,W ,Q) directly from the match record.

Predict Pr [O(v) = 1] with a RF classifier

Estimate 95% prediction intervals Ŵ95 and Q̂95 using
quantile regression forests

Can we predict (O,W ,Q) for vertices v ∼ fP despite
training on data for (v ,O(v),W (v),Q(v)) ∼ RT?

Categorical Donor/Patient Blood Type, Donor/Patient HLA

Boolean Donor/Patient Sex†, Donor Race, Donor Cigarette Use†

Integer Pool Size at Entry, Donor/Patient Age, Patient CPRA

Float Donor/Patient Weight‡, Donor eGFR‡, Donor BMI, Donor Systolic BP

Data types of features used for prediction. Features with † are
independently generated. Features with ‡ are conditionally generated.
All other features are from real data.
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Simulation

Batch Simulation (up until time T ) to obtain RT :
D(1) D(T − 1) D(T )

∅ V (1) · · · V (T )

A(1) A(2) A(T )

Trajectory Simulation (run τ times for S samples) to obtain the
joint distribution of (v ,O(v),W (v),Q(v)) for v ∼ fP :

D(T + 1) D(T ∗ − 1) v∗ ∈ D(T∗)

V (T ) v∗ ∈ V(T+ 1) · · · v∗ ∈ V(T∗) V (T ∗ + 1)

v∗ ∈ A(T+ 1) A(T + 2) A(T ∗)
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Convergence of the Steady-State Constant

We measure the distance of the exchange to steady-state
using the steady-state constant

ζ(T ) :=

∣∣∣⋃T
t=1D(t)

∣∣∣∣∣∣⋃T
t=1 A(t)

∣∣∣ =

∑T
t=1 |D(t)|∑T
t=1 |A(t)|

=
|RT |

|RT |+ |V (T )|
∈ [0, 1]

No matter the size of the exchange, the constant empirically
converges to 1!
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Steady-State Implies Low Shift

Theorem. Suppose each vertex v i ∈
⋃T

t=1 A(t) has features
distributed as N (µ,Σ) where Σ is full rank. Then,

Pr [RT is (γ, δ)-shifted] ≤
(

e

1− ζ(T )

)AT (1−ζ(T ))

︸ ︷︷ ︸
Number of coalitions

Probability that a fixed coalition is shifted︷ ︸︸ ︷
2⌈γd⌉ exp

(
−2AT ζ(T )⌈γd⌉δ2

)
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Empirical Results in Realistic Simulations

Arrival Rate D Federated |RT | ζ MAE
(
Ô
)

IOU
(
Ŵ95

)
IOU

(
Q̂95

)
λP = 1 1500 No 56 0.397 0.258 0.451 0.747
λP = 1 4000 No 246 0.953 0.191 0.644 0.761
λP = 1 50000 No 4888 0.984 0.130 0.653 0.632
λP = 2 1500 No 157 0.477 0.221 0.336 0.815
λP = 2 4000 No 752 0.882 0.212 0.620 0.809
λP = 3 1500 No 285 0.523 0.184 0.386 0.798

λP ≈ 4.77 (OPTN) 1500 No 593 0.509 0.164 0.503 0.812

λP = 1 1500 Yes 268 0.457 0.246* 0.232 0.816*
λP = 1 4000 Yes 1224 0.891 0.148* 0.590 0.800*
λP = 2 1500 Yes 807 0.550 0.145* 0.373* 0.816*
λP = 2 4000 Yes 3773 0.872 0.119* 0.775* 0.820*
λP = 3 1500 Yes 1434 0.488 0.115* 0.421* 0.815*

λP ≈ 4.77 (OPTN) 1500 Yes 2652 0.537 0.103* 0.449 0.812

Experimental Results. We bold steady-state parameters ζ > 0.8,
MAE scores < 0.2, and IOU scores > 0.5. We asterisk any federated
learning experiments that improve relative performance.



Diagnosing Mechanism Behavior with SHAP
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Visualizing Miscalibrations with SHAP + TSNE
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Summary of Contributions

1 We proposed a random-forest approach

Old Young
Large O,W ,Q W ,Q
Small O,W ,Q Q

2 High values of ζ give a proxy for success

3 Our approach can be used to inform policy and make
kidney exchanges more fair

4 We developed a state-of-the-art simulator
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Exchange Dynamics

Dynamic graph model: V (T ) = V (T − 1) ∪ A(T ) \ D(T )

D(1) D(2) D(3)

∅ V (1) V (2) V (3) · · ·

A(1) A(2) A(3)

Match record:

RT =

{
(v ,O(v),W (v),Q(v)) | v ∈

T⋃
t=1

D(t)

}
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Shifted Directions

We say that a unit vector z is δ-shifted if the Kolmogorov
distance between the one-dimensional projections of the data
onto z is at least δ:
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We say that RT is (γ, δ)-shifted if at least a γ fraction of all
unit directions are δ-shifted.



Distributional Shift and Steady-State Exchanges

Shift decreases as the age of the exchange increases, even
controlling for the size of the dataset! But why?

D REC A REC B DON A DON B

1000 0.32 0.21 0.78 0.54
50000 0.22 0.15 0.78 0.48

Test 0.24 0.17 0.79 0.50

Independently, practitioners have observed that kidney
exchanges approach steady state: |A(T )| ≈ |D(T )|

It turns out that these two phenomena are in fact related!
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