Forecasting Patient Outcomes in Kidney Exchange

Naveen Durvasula¹ Aravind Srinivasan ² John Dickerson ²

¹University of California, Berkeley

²University of Maryland, College Park

Renal disease affects millions worldwide with a societal burden comparable to diabetes.

Renal disease affects millions worldwide with a societal burden comparable to diabetes.

Growing demand for donor kidneys is met through the deceased-donor waiting list, direct donation, and **kidney** paired donation (KPD) programs.

Renal disease affects millions worldwide with a societal burden comparable to diabetes.

Growing demand for donor kidneys is met through the deceased-donor waiting list, direct donation, and **kidney paired donation (KPD)** programs.

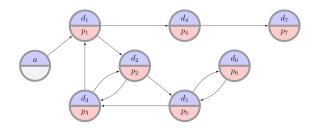


Table 13-2: OPTN KPD Prioritization Points

If the:	Then the match will receive:
Candidate is registered for the OPTN KPD program	.07 points for each day according to Policy 13.7.G: OPTN KPD Waiting Time Reinstatement
Candidate is a 0-ABDR mismatch with the potential donor	10 points
Transplant hospital that registered both the candidate and potential donor in the OPTN KPD program is the same	75 points
Candidate and potential donor had a previous crossmatch that was one of the following:	75 points

Table 13-2: OPTN KPD Prioritization Points

If the:	Then the match will receive:
Candidate is registered for the OPTN KPD program	.07 points for each day according to Policy 13.7.G: OPTN KPD Waiting Time Reinstatement
Candidate is a 0-ABDR mismatch with the potential donor	10 points
Transplant hospital that registered both the candidate and potential donor in the OPTN KPD program is the same	75 points
Candidate and potential donor had a previous crossmatch that was one of the following:	75 points

Not all transplants are equal! KDPI and LKDPI metrics quantify donor risk based on patient and donor features.

Table 13-2: OPTN KPD Prioritization Points

If the:	Then the match will receive:
Candidate is registered for the OPTN KPD program	.07 points for each day according to Policy 13.7.G: OPTN KPD Waiting Time Reinstatement
Candidate is a 0-ABDR mismatch with the potential donor	10 points
Transplant hospital that registered both the candidate and potential donor in the OPTN KPD program is the same	75 points
Candidate and potential donor had a previous crossmatch that was one of the following:	75 points

Not all transplants are equal! KDPI and LKDPI metrics quantify donor risk based on patient and donor features.

Waiting times and odds of match can differ dramatically depending on a pair's features.

Forecasting Patient Outcomes

Can we make KPD programs more transparent by forecasting patient outcomes?

Forecasting Patient Outcomes

Can we make KPD programs more transparent by forecasting patient outcomes?

For a vertex v that represents a patient-donor pair, we aim to predict

- The outcome O(v) was the vertex matched?
- The waiting time W(v) conditioned on O(v) = 1
- The quality (LKDPI) Q(v) conditioned on O(v) = 1

Forecasting Patient Outcomes

Can we make KPD programs more transparent by forecasting patient outcomes?

For a vertex v that represents a patient-donor pair, we aim to predict

- The outcome O(v) was the vertex matched?
- The waiting time W(v) conditioned on O(v) = 1
- The quality (LKDPI) Q(v) conditioned on O(v) = 1

Ideally, prediction is fast, only requires data accessible to the exchange, and gives confidence estimates.

A Simple Approach

We propose a simple random-forest approach to infer (O, W, Q) directly from the match record.

- Predict $\Pr[O(v) = 1]$ with a RF classifier
- Estimate 95% prediction intervals \widehat{W}_{95} and \widehat{Q}_{95} using quantile regression forests

A Simple Approach

We propose a simple random-forest approach to infer (O, W, Q) directly from the match record.

- Predict $\Pr[O(v) = 1]$ with a RF classifier
- Estimate 95% prediction intervals \widehat{W}_{95} and \widehat{Q}_{95} using quantile regression forests

Can we predict (O, W, Q) for vertices $v \sim f_P$ despite training on data for $(v, O(v), W(v), Q(v)) \sim \mathcal{R}_T$?

A Simple Approach

We propose a simple random-forest approach to infer (O, W, Q) directly from the match record.

- Predict Pr[O(v) = 1] with a RF classifier
- Estimate 95% prediction intervals \widehat{W}_{95} and \widehat{Q}_{95} using quantile regression forests

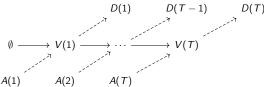
Can we predict (O, W, Q) for vertices $v \sim f_P$ despite training on data for $(v, O(v), W(v), Q(v)) \sim \mathcal{R}_T$?

Categorical	Donor/Patient Blood Type, Donor/Patient HLA		
Boolean	Donor/Patient Sex [†] , Donor Race, Donor Cigarette Use [†]		
Integer	Pool Size at Entry, Donor/Patient Age, Patient CPRA		
Float	Donor/Patient Weight [‡] , Donor eGFR [‡] , Donor BMI, Donor Systolic BP		

Data types of features used for prediction. Features with † are independently generated. Features with ‡ are conditionally generated. All other features are from real data.

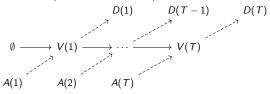
Simulation

Batch Simulation (up until time T) to obtain \mathcal{R}_T :



Simulation

Batch Simulation (up until time T) to obtain \mathcal{R}_T :



Trajectory Simulation (run τ times for S samples) to obtain the joint distribution of (v, O(v), W(v), Q(v)) for $v \sim f_P$:

$$V(T) \longrightarrow \mathbf{v}^* \in \mathbf{V}(\mathbf{T}+\mathbf{1}) \longrightarrow \mathbf{v}^* \in \mathbf{V}(\mathbf{T}^*) \longrightarrow V(T^*+\mathbf{1})$$

$$A(T+2) \qquad A(T^*)$$

Convergence of the Steady-State Constant

We measure the distance of the exchange to steady-state using the **steady-state constant**

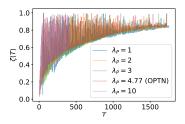
$$\zeta(T) := \frac{\left|\bigcup_{t=1}^{T} D(t)\right|}{\left|\bigcup_{t=1}^{T} A(t)\right|} = \frac{\sum_{t=1}^{T} |D(t)|}{\sum_{t=1}^{T} |A(t)|} = \frac{|\mathcal{R}_{T}|}{|\mathcal{R}_{T}| + |V(T)|} \in [0, 1]$$

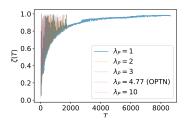
Convergence of the Steady-State Constant

We measure the distance of the exchange to steady-state using the **steady-state constant**

$$\zeta(T) := \frac{\left|\bigcup_{t=1}^{T} D(t)\right|}{\left|\bigcup_{t=1}^{T} A(t)\right|} = \frac{\sum_{t=1}^{T} |D(t)|}{\sum_{t=1}^{T} |A(t)|} = \frac{|\mathcal{R}_{T}|}{|\mathcal{R}_{T}| + |V(T)|} \in [0, 1]$$

No matter the size of the exchange, the constant empirically converges to 1!





Steady-State Implies Low Shift

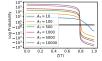
Theorem. Suppose each vertex $\mathbf{v}_i \in \bigcup_{t=1}^T A(t)$ has features distributed as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}$ is full rank. Then,

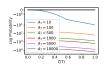
$$\Pr\left[\mathcal{R}_{\mathcal{T}} \text{ is } (\gamma, \delta) \text{-shifted}\right] \leq \underbrace{\left(\frac{e}{1 - \zeta(\mathcal{T})}\right)^{A_{\mathcal{T}}(1 - \zeta(\mathcal{T}))}}_{\text{Number of coalitions}} \underbrace{\frac{e}{2^{\lceil \gamma d \rceil} \exp\left(-2A_{\mathcal{T}}\zeta(\mathcal{T})\lceil \gamma d \rceil \delta^2\right)}}_{2^{\lceil \gamma d \rceil} \exp\left(-2A_{\mathcal{T}}\zeta(\mathcal{T})\lceil \gamma d \rceil \delta^2\right)}$$

Steady-State Implies Low Shift

Theorem. Suppose each vertex $\mathbf{v}_i \in \bigcup_{t=1}^T A(t)$ has features distributed as $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ where $\boldsymbol{\Sigma}$ is full rank. Then,

$$\Pr\left[\mathcal{R}_{\mathcal{T}} \text{ is } (\gamma, \delta)\text{-shifted}\right] \leq \underbrace{\left(\frac{e}{1 - \zeta(\mathcal{T})}\right)^{A_{\mathcal{T}}(1 - \zeta(\mathcal{T}))}}_{\text{Number of coalitions}} \underbrace{2^{\lceil \gamma d \rceil} \exp\left(-2A_{\mathcal{T}}\zeta(\mathcal{T})\lceil \gamma d \rceil \delta^2\right)}_{\text{Probability that a fixed coalition is shifted}}$$





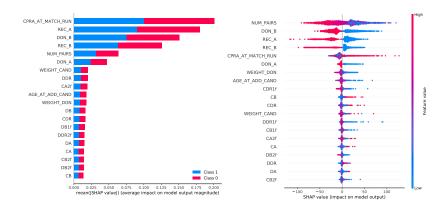
$$\gamma = \delta = 0.3, \ d = (10, 20, 30, 40)$$

Empirical Results in Realistic Simulations

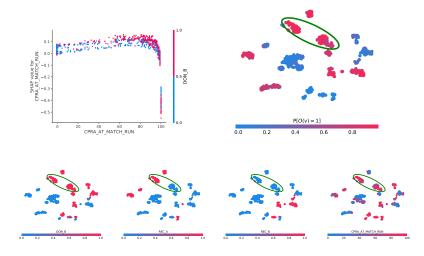
Arrival Rate	D	Federated	$ \mathcal{R}_{\mathcal{T}} $	ζ	$MAE(\widehat{O})$	$IOU\left(\widehat{W}_{95}\right)$	$IOU\left(\widehat{Q}_{95}\right)$
$\lambda_P = 1$	1500	No	56	0.397	0.258	0.451	0.747
$\lambda_P = 1$	4000	No	246	0.953	0.191	0.644	0.761
$\lambda_P = 1$	50000	No	4888	0.984	0.130	0.653	0.632
$\lambda_P = 2$	1500	No	157	0.477	0.221	0.336	0.815
$\lambda_P = 2$	4000	No	752	0.882	0.212	0.620	0.809
$\lambda_P = 3$	1500	No	285	0.523	0.184	0.386	0.798
$\lambda_P \approx 4.77 \text{ (OPTN)}$	1500	No	593	0.509	0.164	0.503	0.812
$\lambda_P = 1$	1500	Yes	268	0.457	0.246*	0.232	0.816*
$\lambda_P = 1$	4000	Yes	1224	0.891	0.148*	0.590	0.800*
$\lambda_P = 2$	1500	Yes	807	0.550	0.145*	0.373*	0.816*
$\lambda_P = 2$	4000	Yes	3773	0.872	0.119*	0.775*	0.820*
$\lambda_P = 3$	1500	Yes	1434	0.488	0.115*	0.421*	0.815*
$\lambda_P \approx 4.77 \text{ (OPTN)}$	1500	Yes	2652	0.537	0.103*	0.449	0.812

Experimental Results. We bold steady-state parameters $\zeta > 0.8$, ${\rm MAE}$ scores < 0.2, and ${\rm IOU}$ scores > 0.5. We asterisk any federated learning experiments that improve relative performance.

Diagnosing Mechanism Behavior with SHAP



Visualizing Miscalibrations with SHAP + TSNE



We proposed a random-forest approach

	Old	Young
Large	O, W, Q	W, Q
Small	O, W, Q	Q

We proposed a random-forest approach

	Old	Young
Large	O, W, Q	W, Q
Small	O, W, Q	Q

2 High values of ζ give a proxy for success

We proposed a random-forest approach

	Old	Young
Large	O, W, Q	W, Q
Small	O, W, Q	Q

- f Q High values of ζ give a proxy for success
- Our approach can be used to inform policy and make kidney exchanges more fair

We proposed a random-forest approach

	Old	Young
Large	O, W, Q	W, Q
Small	O, W, Q	Q

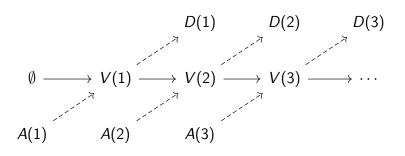
- **2** High values of ζ give a proxy for success
- Our approach can be used to inform policy and make kidney exchanges more fair
- We developed a state-of-the-art simulator

Exchange Dynamics

Dynamic graph model: $V(T) = V(T-1) \cup A(T) \setminus D(T)$

Exchange Dynamics

Dynamic graph model: $V(T) = V(T-1) \cup A(T) \setminus D(T)$



Exchange Dynamics

Dynamic graph model: $V(T) = V(T-1) \cup A(T) \setminus D(T)$

$$0(1) D(2) D(3)$$

$$0 V(1) V(2) V(3) \cdots$$

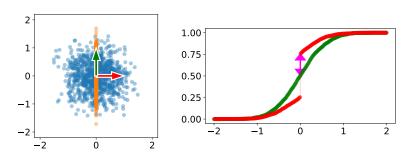
$$A(1) A(2) A(3)$$

Match record:

$$\mathcal{R}_{\mathcal{T}} = \left\{ (v, O(v), W(v), Q(v)) \mid v \in \bigcup_{t=1}^{\mathcal{T}} D(t) \right\}$$

Shifted Directions

We say that a unit vector \mathbf{z} is δ -shifted if the Kolmogorov distance between the one-dimensional projections of the data onto \mathbf{z} is at least δ :



We say that \mathcal{R}_T is (γ, δ) -shifted if at least a γ fraction of all unit directions are δ -shifted.

Distributional Shift and Steady-State Exchanges

Shift decreases as the age of the exchange increases, even controlling for the size of the dataset! But why?

D	REC_A	REC_B	DON_A	DON_B
1000	0.32	0.21	0.78	0.54
50000	0.22	0.15	0.78	0.48
Test	0.24	0.17	0.79	0.50

Distributional Shift and Steady-State Exchanges

Shift decreases as the age of the exchange increases, even controlling for the size of the dataset! But why?

D	REC_A	REC_B	DON_A	DON_B
1000	0.32	0.21	0.78	0.54
50000	0.22	0.15	0.78	0.48
Test	0.24	0.17	0.79	0.50

Independently, practitioners have observed that kidney exchanges approach steady state: $|A(T)| \approx |D(T)|$

Distributional Shift and Steady-State Exchanges

Shift decreases as the age of the exchange increases, even controlling for the size of the dataset! But why?

D	REC_A	REC_B	DON_A	DON_B
1000	0.32	0.21	0.78	0.54
50000	0.22	0.15	0.78	0.48
Test	0.24	0.17	0.79	0.50

Independently, practitioners have observed that kidney exchanges approach steady state: $|A(T)| \approx |D(T)|$

It turns out that these two phenomena are in fact related!