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Motivation
End stage renal disease (ESRD) affects over 750,000 annu-
ally in the United States alone with a societal burden com-
parable to diabetes. Growing demand for donor kidneys is
met through the deceased-donor waiting list, direct dona-
tion, and kidney paired donation (KPD) programs.
These programs allow patients with willing, but biologically
incompatible donors to obtain a living-donor transplant by
way of an organized market. The relative compatibility of
exchange participants is encoded by a compatibility graph

A kidney exchange finds the socially optimal set of cy-
cles/chains that maximize a weighted edge sum. Compli-
cated matching policies aim to balance match efficiency,
hospital incentives, and ethical constraints. Not all trans-
plants are equal, and waiting times can differ dramatically
depending on patient features. All of this leads to an
overall lack of transparency. We aim to make KPD
more transparent by developing and evaluat-
ing a system that forecasts patient outcomes.

A Simple Approach
We model the kidney exchange as a dynamic graph G(T ) =
G(V (T ), E(T )) where the vertex set evolves by the equa-
tion

V (T ) = V (T − 1) ∪ A(T ) \ D(T )

Here, A(T ) and D(T ) denote the arrivals and departures
to the exchange. The edge set E(T ) is determined by the
matching policy. At time T , exchanges have access to a
match record RT given by

RT :=
{

(v, O(v), W (v), Q(v)) | v ∈
T⋃

t=1
D(t)

}
where the outcome O(v) denotes whether the vertex was
matched, W (v) denotes the waiting time, and Q(v) denotes
the quality of the transplant. We use a simple random-forest
approach to forecast outcomes (O, W, Q) from the match
record RT .

Abstract
Kidney exchanges allow patients with end-stage renal disease to find a lifesaving living donor by way of an organized market. However, not all patients
are equally easy to match, nor are all donor organs of equal quality—some patients are matched within weeks, while others may wait for years with
no match offers at all. We propose the first decision-support tool for kidney exchange that takes as input the biological features of a patient-donor
pair, and returns (i) the probability of being matched prior to expiry, and (conditioned on a match outcome), (ii) the waiting time for and (iii) the
organ quality of the matched transplant. This information may be used to inform medical and insurance decisions. We predict all quantities (i, ii, iii)
exclusively from match records that are readily available in any kidney exchange using a quantile random forest approach. To evaluate our approach,
we developed two state-of-the-art realistic simulators based on data from the United Network for Organ Sharing that sample from the training and test
distribution for these learning tasks—in our application these distributions are distinct. We analyze distributional shift through a theoretical lens, and
show that the two distributions converge as the kidney exchange nears steady-state. We then show that our approach produces clinically-promising
estimates using simulated data. Finally, we show how our approach, in conjunction with tools from the model explainability literature, can be used
to calibrate and detect bias in matching policies.

SOTA Simulation Framework
We developed a simulation framework to sample match records and patient trajectories. Our simulators are state-of-the-art,
using real data from the OPTN exchange.
Batch Simulation (up until time T ) to obtain RT :

D(1) D(2) D(T − 1) D(T )

∅ V (1) V (2) · · · V (T )

A(1) A(2) A(3) A(T )

Trajectory Simulation (run τ times for S samples) to
sample (v, O(v), W (v), Q(v)) for v ∼ fP :

D(T + 1) D(T ∗ − 1) v∗ ∈ D(T∗)

V (T ) V(T + 1) · · · V(T∗) V (T ∗ + 1)

v∗ ∈ A(T + 1) A(T + 2) A(T ∗)

Distributional Shift and Steady-State Exchanges

D REC_A REC_B DON_A DON_B
1000 0.32 0.21 0.78 0.54
50000 0.22 0.15 0.78 0.48
Test 0.24 0.17 0.79 0.50

Distributional Shift. While we aim to forecast outcomes for patients
entering the exchange, we only have data (in the form of match records)
for patients who have exited the exchange. This creates a distributional
shift. However, this shift appears to vanish as the exchange gets older! We
analyze this effect through the lens of theory.
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Steady-State Exchanges. Independently, practitioners have observed
that kidney exchanges approach a steady-state over time. We confirm this
empirically in our simulations. We measure distance to steady-state using
the constant ζ(T ) :=

∑T
t=1 |D(t)|∑T
t=1 |A(t)| = |RT |

|RT |+|V (T )| ∈ [0, 1].
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Shifted Directions. We say that a unit
vector z is δ-shifted if the Kolmogorov dis-
tance between the one-dimensional projec-
tions of the data onto z is at least δ. We
say that RT is (γ, δ)-shifted if at least a γ
fraction of all unit directions are δ-shifted.
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Theorem. Suppose each vertex vi ∈
⋃T

t=1 A(t) has features distributed as N (µ, Σ) where Σ is full
rank. Then,

Pr [RT is (γ, δ)-shifted] ≤
(

e

1 − ζ(T )

)AT (1−ζ(T ))

︸ ︷︷ ︸
Number of coalitions

Probability that a fixed coalition is shifted︷ ︸︸ ︷
2⌈γd⌉ exp

(
−2ATζ(T )⌈γd⌉δ2)

Experiments

Arrival Rate D Federated |RT | ζ MAE
(
Ô
)

IOU
(
Ŵ95

)
IOU

(
Q̂95

)
λP = 1 1500 No 56 0.397 0.258 0.451 0.747
λP = 1 4000 No 246 0.953 0.191 0.644 0.761
λP = 1 50000 No 4888 0.984 0.130 0.653 0.632
λP = 2 1500 No 157 0.477 0.221 0.336 0.815
λP = 2 4000 No 752 0.882 0.212 0.620 0.809
λP = 3 1500 No 285 0.523 0.184 0.386 0.798

λP ≈ 4.77 (OPTN) 1500 No 593 0.509 0.164 0.503 0.812
λP = 1 1500 Yes 268 0.457 0.246* 0.232 0.816*
λP = 1 4000 Yes 1224 0.891 0.148* 0.590 0.800*
λP = 2 1500 Yes 807 0.550 0.145* 0.373* 0.816*
λP = 2 4000 Yes 3773 0.872 0.119* 0.775* 0.820*
λP = 3 1500 Yes 1434 0.488 0.115* 0.421* 0.815*

λP ≈ 4.77 (OPTN) 1500 Yes 2652 0.537 0.103* 0.449 0.812

Experimental Results. We bold steady-state parameters ζ > 0.8,
MAE scores < 0.2, and IOU scores > 0.5. We asterisk any federated
learning experiments that improve relative performance.

Diagnosing Mechanism Behavior
Using SHAP and TSNE, we can use our model understand
the underlying matching mechanism and detect potential
miscalibrations.
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Visualizing Miscalibrations. Counterintuitively, we find that hard-to-
match patients with easy-to-match donors are almost always matched

Summary of Contributions

1 We proposed a random-forest approach
Old Young

Large O, W, Q W, Q

Small O, W, Q Q

2 High values of ζ give a proxy for success

3 Our approach can be used to inform policy and make
kidney exchanges more fair

4 We developed a state-of-the-art simulation framework


