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1 Introduction

In the last several decades, convex functions have become one of the most well-studied concepts in optimiza-
tion theory. We can efficiently minimize a convex function with basic methods such as gradient descent and
line search. Recently, however, optimization over non-convex functions has gained quite a bit of interest,
and the nice algorithms of convex optimization tend to offer little more than a local optimum when we pass
to the non-convex setting. Fortunately, not all is lost: in many cases, an optimization problem which is
apparently non-convex can be realized as geodesically convex on a certain Riemannian manifold, which is a
topological space with local resemblance to Euclidean space (for example, the unit sphere or the torus) and
a clever choice of geometry. Rather than defining convexity in terms of straight lines (which need not be
present on a Riemannian manifold), we can instead consider geodesics: the shortest paths between points
on the manifold.

Geodesic convexity has emerged as a powerful technique for efficiently solving many non-convex optimiza-
tion problems. In the present paper, we offer the necessary background to acquaint oneself with geodesic
convexity, and describe methods used to solve geodesically convex optimization problems. More specifically,
we outline first-order methods for geodesic convexity and their convergence guarantees, and give a more
detailed description of a second-order approach as it applies to the operator scaling problem.

2 A primer on Riemannian manifolds

In this section, we give an introduction to the theory of smooth and Riemannian manifolds upon which we
will base our treatment of geodesic convexity. Someone with background at the level of Berkeley’s Math 140
course can safely skip this section without losing any necessary intuition. We start our discussion assuming
that the reader is familiar with metric spaces and topological spaces at the level of Berkeley’s Math 104. The
unacquainted reader should reference the appendix section A.1 for prerequisite definitions and examples.

Metric spaces possess a useful property pertaining to the separation of points:

Definition 2.1 (Hausdorff space). A topological space (S,U) is Hausdorff if for any points p, q ∈ S, there
exist open sets Up, Uq ∈ U such that p ∈ Up, q ∈ Uq and Up ∩ Uq = ∅.

Theorem 2.2. Every metric space is Hausdorff.

Proof. Let (S, d) be a metric space and let p, q ∈ U with p 6= q. ThenD := d(p, q) > 0, so define Up = BD/3(p)
and Uq = BD/3(q). Then we have p ∈ Up, q ∈ Uq, and Up, Uq ∈ U(S,d). The triangle inequality implies that
Up ∩ Uq = ∅, proving that (S, d) is Hausdorff.

In particular, both R and Rn, being metric spaces, are Hausdorff. Recall that in Examples A.2 and A.3 and
Definition A.4, we constructed a topology on a set as a collection of unions of more “basic” sets. This lends
itself to another definition.
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2 A PRIMER ON RIEMANNIAN MANIFOLDS

Definition 2.3 (Base). Let (S,U) be a topological space. A collection B ⊆ U is called a base for U if for any
U ∈ U , there exists a subcollection A ⊆ B such that⋃

A∈A
A = U

The collection of open balls provides an obvious base for the topology of a metric space. As a more specific
example, the open intervals comprise a base for the topology of R.

A base, in some sense, captures all of the information about a topology, since we can recover the entire
topology from a base. We might conclude, then, that the smaller the base for a topology, the simpler the
topology. This motivates the following definition.

Definition 2.4. A topological space (S,U) is second countable (satisfying the second axiom of countability)
if U has a countable base.

Theorem 2.5. Rn is second countable.

Proof. The countable base for URn is

B = {Br((q1, . . . , qn)) | r, q1, . . . , qn ∈ Q}

This collection is in bijection with Qn+1, which is countable. We leave it to the reader to check that this is
indeed a base for URn (recall that Q is dense in R).

We have seen that Rn is both Hausdorff and second countable. Indeed Rn possesses all sorts of niceties that
make it a nice object of study. We now introduce the concept of a topological manifold, which is a topological
space that, despite not being homeomorphic to Rn, manages to retain all of the properties locally.

Definition 2.6. A topological space (M,U) is an n-dimensional topological manifold if

(i) M is Hausdorff.

(ii) M is second countable.

(iii) M is locally Euclidean, meaning that for any p ∈ M , there is an open set U 3 p such that U is
homeomorphic to Rn.

A set U as described in (iii) is called a chart. We often refer to charts as a pair (U,ϕ), where ϕ : U → Rn
is a homeomorphism.

It follows immediately from Theorems 2.2 and 2.5 that Rn is an n-dimensional topological manifold, as for
every point p ∈ Rn, we have the global chart Rn ∈ URn , which is obviously homeomorphic to itself. For a
simple example of a non-Euclidean topological manifold, see Example A.15.

The concept of a topological manifold greatly expands our realm of study. With that being said, for what
follows, we will need a bit more structure. Recall that a map Rm → Rn is called smooth if we can take
arbitrary partial derivatives of each of its n component functions.

Let M be a topological manifold, and let (U,ϕ) and (V, ψ) be charts on M with U ∩ V 6= ∅. Then both ϕ
and ψ restrict to homeomorphisms between U ∩ V and some open subset of Rn. The map ψ ◦ ϕ−1 is called
a transition map.

Definition 2.7. Let M be a topological manifold and let C be a collection of charts covering M . Then M is
called a smooth manifold if the transition maps of C are all smooth on their domains of definition.

There are additional definitions and technicalities around this definition that we omit.
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2 A PRIMER ON RIEMANNIAN MANIFOLDS

Figure 1: A smooth path on the sphere (red) with several tangent vectors (blue). Note that the tangent
vectors are tangent not just to the path, but to the sphere as well.

Example 2.8. The circle S1 is a smooth manifold with the charts given in Example A.15. In fact, the
transition map from UN to US or from US to Un is the smooth function f(x) = 1

x (which is its own inverse)
defined on R \ {0}.

In the Euclidean case, the concept of a convex region or a convex function is intimately connected to straight
lines. A general manifold, however, may not contain straight lines connecting every point, since not all
manifolds are complex (in fact, it’s nontrivial that every manifold can be embedded in Euclidean space). For
this reason, we need to rethink our notion of straight lines.

Definition 2.9. A function f : [a, b] → M is called a smooth path on M if for every p ∈ Im f , there is a
chart (U,ϕ) of M containing p such that the composite map ϕ ◦ f is smooth. A map g : M → R is called
a smooth function if for every p ∈ M , there is a chart (V, ψ) containing p such that the composite map
g ◦ ψ−1 is smooth.

In our rethinking of the notion of a straight line, the perspective we will pursue derives from the fact that
a straight line is the shortest path between two points in Euclidean space. In order to extend this idea to
general manifolds, we must be able to determine the length of a path. Remember that in normal calculus,

the length of a path r(t)
∣∣∣
t∈[a,b]

is given by

`(r) =

ˆ b

a

√
|r′(t)|2 dt

In order to extend this to the setting of smooth manifolds, it would seem we need to define two concepts:
the derivative of a curve or path on M and the norm of a tangent vector.

Note that the derivative of a path - which is a vector tangent to the path - is naturally tangent to the manifold
itself (see Figure 2). For that reason, we introduce the idea of tangent vectors to a smooth manifold.

Definition 2.10. Let C∞(M) be the space of smooth functions on M . A function v : C∞(M)→ R is called
a tangent vector to M at p if

(i) v is a linear map: v(cf + g) = cv(f) + v(g) for f, g ∈ C∞(M) and c ∈ R.

(ii) v satisfies the Leibniz rule at p
v(fg) = v(f)g(p) + v(g)f(p)

The collection of tangent vectors to M at p ∈M is called the tangent space to M at p and is denoted by
TpM , and the disjoint union of all of the tangent spaces is the tangent bundle of M .
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It is immediate that TpM is in fact a vector space. Slightly less obvious is the fact that dimTpM = dimM
(see Appendix A for a proof).

The motivation for this definition is that in Euclidean space, tangent vectors represent directions in which
we can take directional derivatives. The directional derivative operator Dv in Euclidean space is indeed a
linear operator that satisfies the Leibniz rule, offering some retroactive justification of criteria (i) and (ii) in
Definition 2.10. This definition equips us to define the derivative of a smooth path on M .

Definition 2.11. Let M be a smooth manifold and γ : [a, b]→M a smooth path on M . Then we define the
derivative of γ at t ∈ [a, b] by

γ′(t)(f) = (f ◦ γ)′(t)

It’s easy enough to check that γ′(t) satisfies the criteria of Definition 2.10. This gives us half of what we
need to define the length of smooth paths. Now we turn to the other half.

Definition 2.12. Given a smooth manifold M , a Riemannian metric on M consists of an inner product
(positive definite 2-tensor) gp : Tp × Tp → R at each point p ∈ M such that gp varies smoothly with p (we
elaborate on what this means in Appendix A). The pair (M, g) is then a Riemannian manifold.

See Appendix A for some examples of Riemannian manifolds.

We have now arrived at the setting in which we can discuss geodesic convexity. We are of course, however,
missing the final ingredient: geodesics!

Definition 2.13. Let (M, g) be a Riemannian manifold, and let γ : [a, b]→M be a smooth path. Then the
length of γ is given by

`(γ) =

ˆ b

a

|gp(γ′(t), γ′(t))| dt

If γ is continuous and only piecewise smooth, then let a = a0 < a1 < · · · < an = b be the points where γ is
not smooth, and define

`(γ) =

n−1∑
j=0

ˆ aj+1

aj

|gp(γ′(t), γ′(t))| dt

If γ is such that `(γ) ≤ `(β) for all paths β : [a, b]→M , then γ is a geodesic connecting γ(a) to γ(b).

3 Geodesic convexity

This section gives a brief introduction to the relevant definitions in the geodesic convexity literature. The
examples and proofs are adpated from [Vis18]. In standard convex analysis, we think of convex sets as
subsets of Rn where any line segment connecting two points in the set lies within the set. Recall from
Section 2 that lines constitute the geodesics of the space Rn. This observation motivates the following more
general definition of geodesic convexity, which arises when we allow ourselves to introduce a non-Euclidean
metric on the space.

Definition 3.1 (Totally geodesically convex set). Let M be a Riemannian manifold with metric g. We say
that a set K ⊆ M is totally convex with respect to g if for any two points p, q ∈ K, any geodesic γpq
connecting them lies within K.

Observe that if (M, g) is given by Euclidean space, then there is a unique geodesic between any two points
p and q, whence the definiton of a totally convex set coincides with our familiar notion of a convex set.
However, there are many examples of manifolds M where there is no unique geodesic. Recall that geodesics
correspond to paths that locally minimize distance, not globally minimize distance. Consider, for example,
the 2-sphere S2. For any two points p and q on the sphere, there are two geodesics that connect the points
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3 GEODESIC CONVEXITY

corresponding to the short and long arcs on the unique great circle that contains p and q (see the diagram
below).

A totally geodesically convex set must contain both of these geodesics. We now show an example to demon-
strate how expanding the notion of convexity to geodesic convexity (for an appropriate metric) allows us to
reason about non-convex sets.

Example 3.2 (A non-convex set that is geodesically convex). Let Kn
c denote the collection of n× n positive

definite matrices that have determinant c. Observe that Kn
c is not convex. As an example, consider the

following two matrices in K2
2

P =

[
2 1
1 2

]
Q =

[√
2 0

0
√

2

]
Observe that det(P ) = det(Q) = 2, and that both P and Q are positive-definite. However, taking the convex
combination

R =
P +Q

2
=

[
1 +

√
2

2
1
2

1
2 1 +

√
2

2

]
we can see that

det(R) =

(
1 +

√
2

2

)2

− 1

4
6= 2

whence we find that K2
2 is not convex. However, when we consider the natural geometry of this set, given

by the Frobenius inner product 〈P,Q〉, we can see that the sets Kn
c are indeed totally geodesically convex

with respect to this metric. To see this, we use the well-known form for (the unique) geodesic in the space
of positive definite matrices

γPQ(t) = P 1/2
(
P−1/2QP−1/2

)t
P 1/2

It suffices to show that for any t, det (γPQ(t)) = c. This can be easily computed, as

det (γPQ(t)) = det

(
P 1/2

(
P−1/2QP−1/2

)t
P 1/2

)
= det

(
P 1/2

)
det
(
P−1/2

)t
det (Q)

t
det
(
P−1/2

)t
det
(
P 1/2

)
= det (P )

1−t
det (Q)

t

= c1−tct

= c

as desired.

We now similarly define geodesically convex functions, which generalize the usual definition of a convex
function.
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3 GEODESIC CONVEXITY

Definition 3.3 (Geodesically Convex Function). Let M be a Riemannian manifold with metric g, and let
K ⊆ M be a totally convex set with respect to g. We say that a function f : K → R is geodesically
convex with respect to g (or g-convex) if for any p, q ∈ K, and for any geodesic γpq : [0, 1]→ K from p
to q,

f (γpq(t)) ≤ (1− t)f(p) + tf(q)

for all t ∈ [0, 1].

This definition generalizes the notion of having the function lie below the straight line connecting the two
function evaluations. As we know from the theory of convex functions, we can equivalently give a first-order
characterization of convexity, which states that the linear approximation of the function is an underestimate.
Such a characterization exists for geodesically convex functions as well.

Theorem 3.4 (First-order characterization of g-convex functions). Let M be a Riemannian manifold with
metric g, and let K ⊆ M be an open and totally convex set with respect to g. A differentiable function
f : K → R is geodesically convex with respect to g if and only if for any p, q ∈ K, and for any geodesic
γpq : [0, 1]→ K connecting p and q,

f(p) + γ′pq(t)(f) ≤ f(q)

where γ′pq(t)(f) (as in Definition 2.11) denotes the first derivative of f along the geodesic γpq.

Proof. First, note that by Definition 3.3, we have that

f(p) +
f(γpq(t))− f(p)

t
≤ f(q) =⇒ f(p) + lim

t→0

f(γpq(t))− f(p)

t
≤ f(q)

=⇒ f(p) + γ′pq(t)(f) ≤ f(q)

as desired.

We now show the reverse direction. Let p, q ∈ K be arbitrary points, and let γpq : [0, 1]→ K be a geodesic
connecting them. Let t ∈ [0, 1] be a fixed point in the interval, and let r := γpq(t) be its image in the
geodesic. Next, consider the following curves α, β : [0, 1]→ K:

α(u) := γpq (t+ u(1− t)) β(u) := γpq(t− ut))

These curves can be thought of as the “subpaths” of the geodesics that connect r to q and r to p respectively.
As such, they must also be geodesics themselves. Their derivatives are given by

α′(0) = (1− t)γ′pq(t) β′(0) = −tγ′pq(t)

We then have that

f(q) ≥ α′(f)(r) + f(r) =⇒ f(q) ≥ f(r) + (1− t)γ′pq(f)(r)

and similarly,

f(q) ≥ β′(f)(r) + f(r) =⇒ f(q) ≥ f(r)− tγ′pq(f)(r)

Multiplying the first result by t and the second by 1− t, and summing the two, we have that

tf(q) + (1− t)f(p) ≥ f(r) = f(γpq(t))

whence f is geodesically convex.

We may similarly make a second-order characterization of geodesic convexity that mirrors the familiar
second-derivative condition for convex functions.
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3 GEODESIC CONVEXITY

Theorem 3.5 (Second-order characterization for g-convex functions). Let M be a Riemannian manifold with
metric g, and let K ⊆M be an open and totally convex set with respect to g. A twice differentiable function
f : K → Ris geodesically convex with respect to g if and only if for any two points p, q ∈ K, and for any
geodesic γpq : [0, 1]→ K connecting them,

d2f(γpq(t))

dt2
≥ 0

Proof. Let p, q ∈ K be arbitrary points. We define θ : [0, 1] → R as θ(t) := f(γpq(t)). Geodesic convexity
then implies that for all t ∈ [0, 1],

θ(t) ≤ (1− t)θ(0) + tθ(1)

That is, θ is a convex function. The familiar second-order characterization of convex functions leads to

0 ≥ d2θ(t)

dt2
=
d2f(γpq(t))

dt2

as desired. We now prove the reverse direction by contradiction. Suppose that f is not geodesically convex.
Then, there exists p, q ∈ K and a geodesic γpq connecting the the two, along with some t ∈ [0, 1] such that

f(γpq(t)) > (1− t)f(p) + tf(q) =⇒ θ(t)?(1− t)θ(0) + tθ(1)

whence θ is not convex. It then follows, by the second-order characterization of convex functions, that for
some u ∈ [0, 1]

0 >
d2θ(u)

dt2
=
d2f(γpq(u))

dt2

whence the second-order characterization

d2f(γpq(t))

dt2
≥ 0

follows.

We now similarly give an example a function that is non-convex, but is geodesically convex given an apprio-
riate metric

Example 3.6 (A non-convex, but geodesically convex function). We consider the manifold R>0 given by
the positive reals. This manifold can be endowed with non-Euclidean metrics. One such metric arises by
considering the Hessian of the log-barrier function − log(x). The corresponding metric is given by

gp(u, v) =
uv

p2

It is easy to see that gp(u, v) is smooth as a function of p, whence g is a Riemannian metric. While the
proof of this is not within the scope of this paper, it can be deduced from the Euler-Lagrange equations for
geodesics that geodesics γpq : [0, 1]→ Rn>0 joining points p and q under this metric take the form

γpq(t) = exp (αt+ β)

for some constants α, β ∈ R. Next, consider the well known non-convex function f(x) = log(x). We show
that f is indeed geodesically convex. To see this, observe that

log (γpq(t)) = log (exp (αt+ β)) = αt+ β

=⇒ d

dt
[log (γpq(t))] = α

=⇒ d2

dt2
[log (γpq(t))] = 0

whence, by the second-order characterization of geodesically convex functions, the non-convex function log(x)
is indeed geodesically convex!
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Function Algorithm Stepsize Convergence Rate Average Over Iterations?

g-convex Projected D
L
√
ct

O(
√

c
t ) Yes

L-Lipschitz Subgradient

g-convex Projected Stochastic D
G
√
ct

O(
√

c
t ) Yes

|subgradient| ≤ G Subgradient
g-strongly convex Projected 2

µ(s+1) O( ct ) Yes

L-Lipschitz Subgradient
g-strongly convex Projected Stochastic 2

µ(s+1) O( ct ) Yes

|subgradient| ≤ G Subgradient
g-convex Projected 1

L O( c
c+t ) No

L-smooth Gradient

g-convex, L-smooth Projected Stochastic 1

L+σ
√
ct

D

O( c+
√
ct

c+t ) Yes

|variance| ≤ σ Gradient
g-strongly convex Projected 1

L O((1−min 1
c ,

µ
L )t) No

L-smooth Gradient

Table 1: Convergence rates for first-order g-convex optimization algorithms [ZS16] – here, s
denotes the iterate index, t denotes the total number of iterates, D denotes the diameter of the domain, Lf
denotes the Lipschitz constant of f , G denotes the upper bound on gradient norms, µ denotes the strong
convexity constant of f , Lg denotes the Lipschitz constant of the gradient, σ denotes the square root of the
variance of the gradient, and c is a constant that depends on D and the underlying Riemannian metric g.

We now discuss the limitations of geodesic convexity. Indeed, geodesic convexity allows us to apply convex
analysis to non-convex functions, but can it be applied to any function? In other words, for any function f ,
can we construct an appropriate Riemmanian metric such that the function f is geodesically convex? We
answer this question in the negative. Geodesically convex functions share one key property with standard
convex functions – all local minima of the function are also global minima.

Theorem 3.7 (Non-geodesically convex functions). Let M be a smooth manifold, and let f : M → R be a
funciton such that there exists some point p ∈M and an open neighborhood Up of p

f(p) = inf
q∈Up

f(q)

(i.e. p is a local minima), but
f(p) > inf

q∈M
f(q)

p is not a global minima. Then, there is no metric tensor g on M such that f is geodesically convex with
respect to g.

Proof. Suppose for contradiction that a metric g exists such that f is geodesically convex with respect to g.
Let q ∈ M be such that f(q) < f(p), and let γ : [0, 1] → M be a geodesic connecting p to q (i.e. γ(0) = p
and γ(1) = q). Since f is geodesically convex, we have that

f(γ(t)) ≤ (1− t)f(p) + tf(q) < f(p)

for all t ∈ [0, 1]. As γ is smooth, for some t0 ∈ (0, 1], we must have that γ(t) ∈ Up. It then follows, by our
premise that p is a local minima, that for all t ∈ (0, t0]

f(γ(t)) ≥ f(p)

whence we have arrived at a contradiction. Thus, no such metric g may exist.
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We conclude this section with a brief discussion on how geodesically convex optimization problems are solved.
First-order methods for geodesically convex optimization resemble standard gradient descent methods, but
steps are taken with respect to the derivative in the direction of the geodesic. There are geodesically convex
analogues of projected gradient descent, projected subgradient descent, and projected stochastic subgradient
descent. Table 3 shows the convergence rates for different algorithms over different families of functions –
these results were derived in [ZS16].

4 Operator Scaling

In this section, we present the Operator Scaling problem, which takes advantage of geodesic convexity. These
results are adapted from [All+18]. We define operator scaling as the following:

Definition 4.1 (Operator Scaling). Let A1, ..., Am be a set of matrices. Define operator T : Sn+ → Sn+ such

that T (P ) =
∑m
i=1AiPA

†
i . Define the capacity of T by

Capacity(T ) = min
P∈Sn++

det(T (P ))

det(P )
= min
P∈Sn++,detP=1

det(T (P ))

and the capacity of a matrix P under T as Capacity(P ) = det(T (P ))
det(P ) . Our problem is to determine whether

the optimal capacity P ∗ is feasible, because if it is, we can define Y ∗ = T (P ∗)−1 such that by scaling our
original matrices by (Y ∗)1/2 and P ∗ we make T doubly stochastic, or that it always outputs a matrix such
that every row and column sums to 1. This scaling is given by

A∗i = (Y ∗)1/2Ai(P
∗)1/2

and the new operator becomes

T ∗(P ) =

m∑
i=1

A∗iP (A∗i )
†

Operator scaling is useful in a variety of contexts, such as optimizing Polynomial Identity Testing, which
determines whether two multivariate polynomials are the same, and for efficiently determining if a matrix is
invertible.

Without geodesic convex optimization, the best known algorithms to solve this problem were polynomial
with respect to n and 1/ε given an error bound of Θ(ε). On the other hand, geodesic convex optimization
can solve this problem in polynomial time with respect to n, and logarithmic time with respect to ε, a vast
improvement. We will go over a brief overview of the algorithm and its intuition in this section.

Definition 4.2 (Positive Definite Characterization of G-Convexity). F is geodesically convex if for every
X ∈ Sn++ and Hermitian matrix ∆, F (X1/2es∆X1/2) is convex in s ∈ R.

Definition 4.3 (Geodesically-Second-Order Robust). F : Cnxn → R is g-second-order robust if for every
X ∈ Sn++ and for every Hermitian ∆ such that ‖∆‖2 ≤ 1, we have∣∣∣∣d3g

ds3

∣∣∣∣ ≤ 2
d2g

ds3

where
g(s) = F (X1/2es∆X1/2)

Definition 4.4 (Doubly Stochastic). If operator T defined by (A1, ..., Am) is doubly stochastic, then∑m
i=1AiA

†
i =

∑m
i=1A

†
iAi = I. In addition, we define the distance for an operator T to being doubly

stochastic as

d(T ) = Tr((

m∑
i=1

AiA
†
i − I)2) + Tr((

m∑
i=1

A†iAi − I)2)

Thus, a doubly stochastic T would have distance 0, and d(T ) can be seen as an error margin.
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We first present a general second order method to minimize geodesically convex functions. Suppose we are
trying to minimize g-convex F ; assume we know all gradients and Hessians of F .

X0 ← I;
for t = 0, ..., T − 1 do

f t(∆) = F (X
1/2
t e∆X

1/2
t )

∆t = arg min∆∈Cnxn,∆=∆†,‖∆‖2≤
1
2
Tr(∇ f t(0)∆) + 1

2eTr(∇
2 f t(0)∆⊗∆)

Xt+1 ← X
1/2
t e∆t/e

2

end for
return XT

Theorem 4.5. Suppose F is geodesically convex and geodesically-second-order robust. Then

F (XT )− F (X∗) ≤ ε

with

T = O(R log
F (I)− F (X∗)

ε
)

iterations, where X∗ is the minimizer for F and

R = max
X|F (X)≤F (I)

∥∥∥log(X−1/2X∗X−1/2)
∥∥∥

2

We can extend this algorithm for operator scaling. Note that log Capacity(X) is both geodesically convex
and geodesically-second-order robust (which can be shown with algebraic matrix manipulations – full proof in
[All+18]), and minimizing this function solves Operator Scaling. However, by applying Theorem 4.5 we notice
that we cannot bound R with this function; thus, we instead choose to minimize F (X) = log Capacity(X) +
λReg(X), where Reg(X) is defined as the regularization function Reg(X) = Tr(XX†)Tr((XX†)−1) and λ is
some adjustable weight. This is also g-convex, g-second-order robust, and allows us to polynomially bound
R.

We define f t(∆) = F (X
1/2
t e∆X

1/2
t ) = log Capacity(Xte

∆/2) + λReg(Xte
∆/2). With this g-convex and g-

second-order robust definition of f t, we can also see that our intermediate objective for each iteration t,
∆t = arg min∆∈Cnxn,∆=∆†,‖∆‖2≤

1
2
Tr(∇ f t(0)∆) + 1

2eTr(∇
2 f t(0)∆ ⊗∆), is convex and quadratic in terms

of ∆, allowing for efficient optimization.

Theorem 4.6. Given a choice of error bound ε such that d(T ) ≤ ε, and M such that ‖Ai‖∞ ≤ M for all
i = 1, ...,m, if there exists X∗ε ∈ Cnxn such that log Capacity(X∗ε ) ≤ log Capacity(T ) + ε, we can choose
λ = ε

n2(κ(X∗ε ))2 and T polylog in n, m, κ(X∗ε ), 1/ε, and M , such that the algorithm converges in time

complexity polynomial in n, m, logM , log κ(X∗ε ), and log 1/ε.

Proofs for Theorems 4.5 and 4.6 can be found in section B of our appendix. Finally, we must show that
κ(X∗ε ) is polynomially bounded, in case it exponentially grows to infinity as ε tends to zero. Fortunately,
Theorem 4.7 shows this is not the case:

Theorem 4.7. Suppose ‖Ai‖∞ ≤ M for all i = 1, ...,m, and Capacity(T ) > 0. For all ε > 0, there

exist X,Y ∈ S++n such that (B1, ..., Bm) = (XA1Y, ...,XAmY ) and T ′(P ) =
∑m
i=1BiPB

†
i satisfies

‖X‖2 ,
∥∥X−1

∥∥
2
, ‖Y ‖2 ,

∥∥Y −1
∥∥

2
≤ (mnM)en

3/2 log(12mn4M2/ε).

The proof is derived from convergence of continuous gradient flow, and can be found in [All+18]. Thus,
κ(X∗ε ) is polynomially bounded, and we have seen that by using geodesic convex optimization, we were able
to turn Operator Scaling from polynomial in 1/ε to polynomial in log 1/ε.
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A SUPPLEMENTAL PROOFS AND EXAMPLES TO SECTION 2

A Supplemental Proofs and Examples to Section 2

In this section, we provide many additional theorems examples to assist with understanding as it relates to
topology and the theory of smooth and Riemannian manifolds. It would of course be impossible to provide
a complete coverage of the theory of smooth manifolds in a paper of this length; we direct the curious reader
to Lee’s excellent book [Lee13].

A.1 Topological Spaces

In some proofs, we will choose efficiency over verbosity. For example, we do not define connectedness, but
we still make use of it in proofs, because the intuitive idea of what it means to be connected (which is closer
to path-connectedness) is more instructive then the way topologists define it.

Definition A.1 (Topological space). A topological space (S,U) consists of a set S and a collection U of
open sets such that

(i) If {Uα}α∈A is a subset of U for some arbitrary index set α, then⋃
α∈A

Uα ∈ U

(ii) If U1 and U2 are open, then so is U1 ∩ U2.

(iii) ∅, S ∈ U .

The collection U is called the topology of the space.

Example A.2. The canonical example of a topological space is R, which has as its topology the collection

UR =

{
n⋃
i=1

(ai, bi)
∣∣∣0 ≤ n ≤ ∞,−∞ ≤ a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn

}

of disjoint unions of open intervals.

Example A.3. The other example in which we are interested is Rn. As in the previous example, we construct
the open subsets of Rn as unions of more “basic” sets. Define

Br(p) = {q ∈ Rn | d(p, q) < r}

where p ∈ Rn and r ∈ R. The topology of Rn is given by

URn =

{
n⋃
i=1

Bri(pi) | 0 ≤ n ≤ ∞, pi ∈ Rn, ri ∈ R

}

The reader is left to check that the definition of UR given in Example A.2 is equivalent to the definition of
UR1 given in Example A.3. For further examples of topological spaces, see Appendix A.

The construction given in Example A.3 hints at a more general structure, which we introduce now.

Definition A.4 (Metric space). Let S be a set and let d : S × S → R be a function satisfying

(i) d(p, q) ≥ 0 and d(p, q) = d(q, p) for all p, q ∈ S.

(ii) d(p, q) = 0 if and only if p = q.

(iii) For all p, q, r ∈ S, we have the triangle inequality

d(p, r) ≤ d(p, q) + d(q, r)

12
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Then d is called a metric on S, and the open ball of radius r around p is

Br(p) = {q ∈ S | d(p, q) < r}

The topology on S induced by d is

U(S,d) =

{
n⋃
i=1

Bri(pi) | 0 ≤ n ≤ ∞, pi ∈ S, ri ∈ R

}

The concept of a metric space will help us later when we find that the geodesics determined by a Riemannian
metric on a manifold furnish us with a metric on the manifold. Note the similarities between Definition A.4
and Example A.3. Indeed, Example A.3 presents Rn as a metric space with the Euclidean metric.

Example A.5 (Discrete topology). Let S be any set. Then we can define the discrete topology DS by

DS = P(S)

to be the power set of S. In other words, we consider every subset of S to be open. We can check that this
satisfies the definition of a topology, as both ∅ and S itself are subsets of S, making them open. Further,
any union of subsets of S is again a subset of S, making it open. Finally, the intersection of two subsets of
S is also a subset of S.

As a matter of fact any set S endowed with the discrete topology is in fact a metric space under the discrete
metric

δ(p, q) =

{
0 p = q

1 p 6= q

Notice that under this metric, we have that

B1/2(p) = {p}

is open. Since the arbitrary union of open sets is open, we find that all subsets of S are open, thereby
recovering the discrete topology on S.

Example A.6 (Cofinite topology). Let S be any set. Then we can define the cofinite topology CFS by

CFS = {T ⊆ S | |S \ T | <∞ or T = ∅}

That is, CFS is the collection of subsets of S whose complement is finite. In order for CFS to satisfy the
definition of a topology, we need to include ∅ as well. To confirm that CFS is indeed a topology, let C ⊆ CFS
and note that ⋃

T∈C
T = S \

⋂
T∈C

S \ T︸ ︷︷ ︸
finite

 = S \

(⋂
T∈C

S \ T

)
︸ ︷︷ ︸

finite

∈ CFS

(if ∅ ∈ C, we can simply remove it without affecting the union) since the intersection of arbitrarily many
finite sets is finite. Furthermore, if T1, T2 ∈ CFS , then

T1 ∩ T2 = S \

S \ T1︸ ︷︷ ︸
finite

∪S \ T2︸ ︷︷ ︸
finite

 = S \ ((S \ T1) ∩ (S \ T2))︸ ︷︷ ︸
finite

∈ CFS

(if ∅ ∈ {T1, T2}, then the intersection is ∅ ∈ CFS). Since the complement of S is ∅, which is finite, we can
indeed confirm that CFS is a topology.

Notice that if S is finite, then every subset of S has finite complement, so CFS = DS .

13
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Theorem A.7. If S is infinite, then the space (S, CFS) is not Hausdorff, and hence (S, CFS) is not a metric
space.

Proof. Let p 6= q be two points in S. If p ∈ Tp ∈ CFS and q ∈ Tq ∈ CFS , then both Tp and Tq are
nonempty and hence have finite complements. We found above that the intersection Tp∩Tq must have finite
complement as well. Since S is infinite, this implies that Tp ∩ Tq is infinite, and in particular nonempty.
As such, there are no sets in CFS satisfying the conditions of Definition 2.1, meaning that (S, CFS) is not
Hausdorff.

We prove in Theorem 2.2 that all metric spaces are Hausdorff. Since (S, CFS) is not Hausdorff, it cannot be
a metric space.

Definition A.8. Let (S,U) and (T,V) be topological spaces. A function f : S → T is called continuous if
for any V ∈ V, we have f−1(V ) ∈ U , where f−1 denotes the preimage (not the inverse of f , which need not
be injective).

We offer an alternate conception of continuity (without proof) for metric spaces that makes the connection
to Rn more clear.

Theorem A.9. If (S, dS) and (T, dT ) are metric spaces, then a map f : S → T is continuous if and only if
for all s ∈ S and all ε > 0, there exists δ > 0 such that

dS(s, s′) < δ =⇒ dT (f(s), f(s′)) < ε

Definition A.10. Let (S,U) and (T,V) be topological spaces. A function f : S → T is called a homeomor-
phism if f is a bijection and both f and f−1 are continuous. In this case, the spaces S and T are called
homeomorphic.

Example A.11. The interval (0, 1) is homeomorphic to R via the map

f(x) = − log

(
1− x
x

)
whose inverse is the sigmoid function.

To tie up a loose end, we offer a proof of Theorem A.9.

Proof. Let f : S → T be a continuous map as in Definition A.8, let s ∈ S, and let ε > 0. Then Bε(f(s)) is
an open set in T , meaning that f−1(Bε(f(s))) is open in S. It follows that f−1(Bε(f(s))), which contains
s, must contain some open ball Bδ(s). As such, we have

dS(s, s′) < δ ⇐⇒ s′ ∈ Bδ(s) =⇒ s′ ∈ f−1(Bε(f(s))) =⇒ f(s′) ∈ Bε(f(s)) ⇐⇒ dT (f(s), f(s′)) < ε

Suppose conversely that the implication in Theorem A.9 can be made to hold for any ε, and let

V =
⋃
α∈A

Bεα(pα)

For each p ∈ f−1(V ), there is then some α such that f(p) ∈ Bεα(pα). Then choose some ξ such that
Bξ(f(p)) ⊆ Bεα(pα), and choose δp such that

d(p, s′) < δp =⇒ d(f(p), f(s′)) < ξ

This gives us
Bδp(p) ⊆ f−1 (Bξ(f(p))) ⊆ f−1(V )

14
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p

Figure 2: The figure eight metric space with its point of self-intersection, p, labelled.

and hence
f−1(V ) =

⋃
p∈f−1(V )

Bδp(p)

being a union of open balls, is open. This proves that f is continuous in the sense of Definition A.8,
completing the equivalence.

The following space is often useful for constructing counterexamples to various claims or testing whether or
not a claim holds for all metric spaces.

Example A.12 (Figure eight). Consider a figure eight curve (also referred to as a lemniscate) shown in Figure
A.12. We can define this space algebraically using polar coordinates

L =
{

(r, θ) | θ ∈ (−1.1π, 1.1π) ∧ r =
√

cos(2θ)
}

This space is a subset of R2; we can inherit the Euclidean metric (we would say that L is a metric subspace
of R2).

A.2 Topological Manifolds

We have mentioned that the figure eight space is a frequent counterexample in elementary topology. Indeed,
we have the following theorem.

Theorem A.13. The figure eight space is Hausdorff, second countable, and locally Euclidean at every point
except for its point of self-intersection, where it is not locally Euclidean

Proof. Let L denote the figure eight space. Since L is a metric space, it is Hausdorff. To see that it is second
countable, notice that the open balls around each point in L are nothing but the intersections of open balls
in R2 with L. Since R2 is second countable, then, so is L.

Now let q ∈ L be a point other than the self-intersection point. Then in polar coordinates, we can write

q =
(√

cos(2θ), θ
)

where θ /∈
{
− 3π

4 ,−
π
4 ,

π
4 ,

3π
4

}
. Let I be an open subinterval of (−1.1π, 1.1π) containing θ but not containing

any of these four angles, and observe that

G := {(r, θ) ∈ L | θ ∈ I}

is homeomorphic to I via the map (r, θ) 7→ θ. This proves that L is locally Euclidean at least everywhere
except the self-intersection point.

To see that L is not locally Euclidean at p (see Figure A.12), note that any neighborhood of p in L is
“X-shaped”. To put this in mathematical terms, we can say that if N is a sufficiently small neighborhood of
p, then N has only one connected component, but N \ {p} has four. We choose not to introduce additional
results (that are covered in any real analysis class) and consider it sufficient to say that if an open subset
of R is connected, then when we remove one point, it cannot have four connected components. This means
that no neighborhood of p can be homeomorphic to an open subset of R.

15
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p

Figure 3: The stereographic projection from bS1 to R, defined everywhere except at the north pole.

Corollary A.14. The figure eight space L is not a topological manifold.

Proof. L is not locally Euclidean at p.

This shows just how close a space can come to being a topological manifold.

The technique that we mentioned, wherein we consider the number of connected components that result
from removing one point from a topological space, is a common method of proof.

Example A.15 (A non-Euclidean topological manifold). The unit circle

S1 =
{

(x, y) ∈ R2 | x2 + y2 = 1
}

is not homeomorphic to R, but for any p ∈ S1, the space S1\{p} is homeomorphic to R via the stereographic
projection map shown in Figure 3. Every line emanating from the north pole p intersects the circle S1 at
one other point q and intersects the line R at one point r. The stereographic projection takes q to r. This
map is undefined at p, hence why S1 \ {p}, rather than S1, is homeomorphic to R. With that in mind, let

UN = S1 \ {(0, 1)} US = S1 \ {(0,−1)}

Both UN and US are homeomorphic to R via a stereographic projection map, and every point of S1 is
contained in at least one of these two sets. This proves that S1 is a 1-dimensional topological manifold.

To confirm that S1 is not homeomorphic to R, note that when we remove a point of S1, we get a space that
is homeomorphic to R (via the stereographic projection map). I we remove a point of R, then the resulting
space is not connected and hence is not homeomorphic to R.

Example A.16 (Torus). The torus is a two-dimensional topological manifold. In Figure 4, we have drawn
a torus covered by many rectangles. Each rectangle is homeomorphic to R2 (or, if you prefer, an open
subset thereof), which makes the local Euclidean-ness of the torus quite evident. Second countability and
Hausdorff-ness follow from the fact that the torus is a metric subspace of R3. Some may be aware of the
fact that a torus is isomorphic to the quotient of R2 by a two-dimensional lattice, which can be represented
by the gluing diagram in Figure 5 (a reader who has studied some algebraic topology will have seen such
a diagram). The gluing diagram furnishes us with a natural doubly periodic continuous surjection from R2

onto the torus. By selecting a particular period - say (0, 1) × (0, 1), we in fact obtain a homeomorphism
between (0, 1)×(0, 1) and an open subset of the torus. Choosing another period, such as (0.5, 1, 5)×(0.5, 1.5),
identifies yet another open subset. Each of these open subsets can be taken as a chart, and we can visualize
these charts using the gluing diagram, which we have also depicted in Figure 5.

As a final example of a topological manifold, we mention a perhaps slightly more relevant example: the
general linear group.
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Figure 4: A torus with gridlines. Each rectangle gives an example of a chart homeomorphic to R2.

Figure 5: A gluing diagram for the torus together with some natural charts.

Example A.17 (General linear group). Note that the space Rn×n of n×n real matrices is naturally isomorphic

to Rn2

as both a vector space and a topological space (these are really just two choices of notation meant
to fit different contexts). Notice that the determinant function det : Rn×n → R is a continuous map, which
means by Definition A.8 that the preimage of an open set in R under det is an open subset of Rn×n. This
means that the preimage of the open set (−∞, 0) ∪ (0,∞) - namely, the set of n× n matrices with nonzero
determinant - is an open subset of Rn×n. This set is precisely GL(n), which we have hence shown to be an
n2-dimensional topological manifold with a global chart.

A.3 Smooth manifolds

As it turns out, all of the topological manifolds that we mentioned in the previous section are smooth
manifolds with the charts that we mentioned. In fact, almost every topological manifold (in some sense of
the world “almost”) can be endowed with a smooth structure. It wasn’t until the 1980s that mathematicians
produced a topological manifold with no smooth structure. We mentioned in Section 2 that the transition
maps of S1 with stereographic projection charts are both simply the function f(x) = 1

x . We will carry out
the computation of transition maps once more in this section.

Example A.18 (Sn). Let

Sn =

{(
x1, . . . , xn+1

)
∈ Rn+1

∣∣∣ n+1∑
i=1

(
xi
)2

= 1

}
be the n-sphere. Let

N = (0, . . . , 0, 1) S = (0, . . . , 0,−1)

denote the north and south pole of Sn. We claim that Sn is a smooth manifold with the charts Sn \{N} and

17
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Sn \ {S}, where the coordinate maps are the stereographic projections

σN
(
x1, . . . , xn+1

)
=

(
x1, . . . , xn

)
1− xn+1

σS
(
x1, . . . , xn+1

)
=

(
x1, . . . , xn

)
1 + xn+1

Note that

1− |u|
2 − 1

|u|2 + 1
=

2

|u|2 + 1

Define

τ
(
u1, . . . , un

)
=

(
2u1, . . . , 2un, |u|2 − 1

)
|u|2 + 1

Then this gives us

σN (τ(u)) =
(2u1, . . . , 2un)

|u|2 + 1
· |u|

2 + 1

2
= (u1, . . . , un) = u

We also have that

|σN (x)| =
√

(x1)2 + · · ·+ (xn)2

1− xn+1

It follows from plugging this and the other coordinates of σN (x) into τ that τ(σN (x)) = x. Hence, τ = σ−1
N

and σN is a bijection. Both σN and σ−1
N can be seen to be continuous, which shows that Sn \ {N} can be

taken to be a chart of Sn with coordinate map σN . A similar verification shows that σS is a homeomorphism,
which shows that Sn \ {S} is a valid choice of chart.

To verify that Sn is a smooth manifold with these charts, we compute the transition maps.

Plugging σ−1
N into σS , we have

σS ◦ σ−1
N (u) =

(2u1, . . . , 2un)

|u|2 + 1
÷
(
|u|2 − 1

|u|2 + 1
+ 1

)
=

(2u1, . . . , 2un)

|u|2 + 1
· |u|

2 + 1

2|u|2
=

(u1, . . . , un)

|u|2

Note that
∂

∂uj
ui∑
(uk)2

= − 2uiuj

(
∑

(uk)2)
2 +

δij∑
(uk)

2

This is smooth for any i and j, whence it follows that the transition map is smooth. Observe that this map
is its own inverse, since ∣∣σS ◦ σ−1

N (u)
∣∣ =

|u|
|u|2

=
1

|u|
This proves that the transition map is a diffeomorphism, whence the two charts (Sn \ {N} , σN ) and (Sn \
{S} , σS) define a smooth structure on Sn, as desired.

We could perform a similar calculation for any of the topological manifolds mentioned in the previous section.
These calculations evidently tend to be very cumbersome, so we satisfy ourselves with just Sn.

A.3.1 Smooth maps

In Definition 2.9, we the ideas of a smooth path and of a smooth function on a manifold. Both of these
definitions relied on the smoothness of some composite map between Euclidean spaces, and indeed, the astute
reader may note that smooth paths and smooth functions are both examples of a more general concept.

Definition A.19 (Smooth map). Let M and N be smooth manifolds of dimension m and n, respectively. A
function F : M → N is called a smooth map if for any p ∈M , there exists a chart (U,ϕ) of M containing
p and a chart (V, ψ) of N containing f(U) such that the composite function

ψ ◦ F ◦ ϕ−1 : Rm → Rn

is smooth where it is defined (on ϕ(U)). This composite function is called a coordinate representation
of F .

18
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This definition is quite compatible with the discussion on page 34 of [Lee13].

Theorem A.20. A smooth function, as defined in Definition 2.9, is a smooth map from M to R. A smooth
path, as defined in Definition 2.9, is a smooth map from [a, b] to M .

Remark. The space [a, b] is in fact not a manifold, but rather a related objected called a manifold with
boundary. It is not worth elaborating on these spaces because of their extreme similarity to typical smooth
manifolds.

Proof. The manifolds [a, b] and R both have a global chart whose coordinate function is the identity map.
In the case of smooth functions, we have ψ = id, and in the case of smooth paths, we have ϕ = id. This
reduces Definition A.19 to Definition 2.9.

Example A.21 (Smooth path). Define

M = S2n−1 =

{(
x1, . . . , x2n

)
∈ R2n

∣∣∣ 2n∑
i=1

(
xi
)2

= 1

}
=

{(
z1, . . . , zn

)
∈ Cn

∣∣∣ n∑
i=1

∣∣zi∣∣2 = 1

}

Let p0 =
(
z1

0 , . . . , z
n
0

)
be any point in M , and define

γ(t) = p0e
it =

(
z1

0e
it, . . . , zn0 e

it
)

Then for any choice of domain [a, b], γ : [a, b]→M is a smooth path on M . The computation of coordinate
representations is roughly as cumbersome as computing transition maps, so we omit the specific calculations
to demonstrate this.

A rough visualization of this path is given in Figure 2 (even though S2 does not have odd dimension as in
the above construction).

A.4 Tangent vectors

We remarked in Section 2 that the dimension of the tangent space TpM as a vector space equals the dimension
of M as a manifold. In this section, we offer a proof. First, we need to introduce the concept of the differential
of a map, which is analogous to the Jacobian of a map from Rm to Rn.

Definition A.22. Let M and N be smooth manifolds and let F : M → N be a smooth map. The differential
of F at p, denoted dFp : TpM → TpN , is defined by

dFp(v)(f) = v(f ◦ F )

where f is a smooth function and v is a tangent vector to N at F (p).

Remark. We defined the derivative of a smooth path by

γ′(t)(f) = (f ◦ γ)′(t)

Notice that the manifold [a, b] has only a single tangent vector at each point up to scalar multiplication,
which represents the derivative operator (the directional derivative “in the t direction”). Denoting this vector
by v, the above becomes

γ′(t)(f) = v(f ◦ γ)(t) = dγt(v)(f)

so the derivative of a smooth path corresponds to viewing the path as a smooth map and taking the
differential.

Theorem A.23. The differential dFp of a smooth map F : M → N at a point p is a linear transformation
from TpM to TF (p)N .
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Proof. We have

dFp(cv + w)(f) = (cv + w)(f ◦ F )

= c · v(f ◦ F ) + w(f ◦ F )

= c · dFp(v)(f) + dFp(w)(f)

= (c · dFp(v) + dFp(w))(f)

for all smooth functions f , which proves that dFp(cv+w) = c ·dFp(v)+dFp(w) for all c ∈ R and v, w ∈ TpM .
With the additional observation that dFp(0) = 0, we conclude that the differential is a linear transformation.

Lemma A.24. If F : M → N and G : N → M are smooth maps satisfying F ◦ G = idN and G ◦ F = idM
(i.e. F and G are inverse maps), then dFp and dGF (p) are inverse linear transformations.

Proof. We have
dGF (p)(dFp(v))(f) = dFp(v)(f ◦G) = v(f ◦G ◦ F ) = v(f)

and
dFp(dGF (p)(v))(g) = dGF (p)(v)(g ◦ F ) = v(g ◦ F ◦G) = v(g)

where f and g are arbitrary smooth functions on M and N , respectively. This gives

dFp ◦ dGF (p) = idTpM dGF (p) ◦ dFp = idTF (p)N

so dFp and dGF (p) are inverse linear transformations, as desired.

Theorem A.25. If M is a smooth manifold of dimension n, then for each point p ∈M , dimTpM = n.

Proof. Let (U,ϕ) be a chart of M around p. Note that ϕ is tautologically a smooth map from U to an open
subset of Rn with smooth inverse map. By the previous lemma, the differential of ϕ is a linear isomorphism
of tangent spaces. The tangent spaces TpU and TpM coincide (by an elementary argument that is not worth
including), and tangent space to Rn at any point is isomorphic to Rn as a vector space (another elementary
argument: tangent vectors in Rn correspond to directional derivatives). This proves that the dimension of
TpM equals the dimension of Tϕ(p)Rn, namely n.

For a more thorough treatment of this idea, see Propositions 3.2 through 3.10 of [Lee13], which build to this
result.

A.5 Vector bundles

In Definition 2.12, we noted that the inner product gp must somehow vary smoothly with p. In this section,
we flesh out this remark to formalize the notion of a Riemannian metric. Chapters 10, 12, and 13 of [Lee13]
offer a much more robust treatment of the ideas here. We use slightly distinct notation and verbiage from
[Lee13] that is more specific to our applications (and makes the significance of, for example, the bundle of
covariant 2-tensors on a manifold, more clear).

Definition A.26. Let M and E be smooth manifolds. E is said to be a smooth rank-k vector bundle
on M if there exists a smooth surjection π : E →M with the following properties:

(i) For each point p ∈M , π−1(p) has the structure of a real vector space of dimension k.

(ii) For each point p ∈M , there is an open neighborhood U of p and a diffeomorphism (smooth map with
smooth inverse) Φ : π−1(U)→ U ×Rk such that πU ◦Φ = π (where πU : U ×Rk → U is the projection
map) and Φπ−1(q) is a vector space isomorphism from π−1(q) to Rk.
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A.5 Vector bundles A SUPPLEMENTAL PROOFS AND EXAMPLES TO SECTION 2

Example A.27 (Tangent bundle). In Definition 2.10, we remarked that the disjoint union of all tangent
spaces to a manifold is called the tangent bundle. The tangent bundle of a smooth manifold M is denoted
by TM . Note that any element can be represented as an ordered pair (p, v), where p ∈ M and v ∈ TpM .
Then there is a natural projection map π : TM →M which maps (p, v) to p. Indeed, TM can be endowed
with a smooth structure in such a way that the map π is smooth (π is trivially surjective).

The concept of a vector bundle underlies what is meant by the phrase “gp varies smoothly with p.” Recall
that if V is a real vector space, then V ∗ - the dual of V - represents the space of linear functionals from V
to R. If we take the tensor product V ∗ ⊗ V ∗, then we get the space of bilinear functionals V × V → R.

Definition A.28 (Bundle of 2-tensors). Let M be a smooth manifold. Then the bundle of covariant
2-tensors on M is given by

T 2T ∗M :=
⊔
p∈M

(
TMp

)∗ ⊗ (TMp )∗
We choose smooth charts and coordinate maps on T 2T ∗M to make the projection map onto M smooth.
The machinery required to formalize this is out of scope.

With this definition under our belt, we can understand what exactly is meant by the phrase “gp varies
smoothly with p.” In particular, the Riemannian metric is a smooth map from M to T 2T ∗M (such that gp
is positive definite for each p ∈M).

Remark. Some authors choose to develop the ideas of geodesics and g-convexity by defining objects called
affine connections and then restricting attention to a special affine connection known as the Levi-Civita
connection. We exclude these objects from our treatment, because the Levi-Civita connection is determined
by the Riemannian metric on a manifold, meaning that the more general discussion of affine connections is
unnecessary. Further still, we can define geodesics with no mention of the Levi-Civita connection, so affine
connections as a whole can be avoided altogether.

We offer one further theorem relating to Riemannian manifolds to connect these ideas back to our earlier
notion of a metric space.

Theorem A.29. A Riemannian manifold (M, g) has a natural metric space structure defined as follows: for
any p, q ∈M , let γ be a geodesic from p to q, and define d(p, q) = `(γ).

Proof. We check properties (i)-(iii) of Definition A.4. Property (i) follows from the positive definiteness of gp.
For property (ii), it suffices to show, since gp is positive definite, that if γ(a) 6= γ(b), then γ′(t) is nonzero for
some t ∈ [a, b]. Let M have dimension n, and let (U,ϕ) be a chart of M containing γ(a) but not containing
γ(b). Then γ must take multiple values inside U , so ϕ ◦ γ takes on multiple values inside ϕ(U). As a result,
one of the n coordinates of ϕ - say, ϕ1 - is nonconstant, implying that

(ϕ1 ◦ γ)′(t) = γ′(t)(ϕ1)

is not identically 0, so γ′(t) is nonzero for some t ∈ [a, b]. This proves property (ii). For property (iii), let
p, q, r ∈ M , let α : [0, 1] → M be a geodesic from p to q, and let β : [1, 2] → M be a geodesic from q to r.
Then

(α · β)(t) :=

{
α(t) t ∈ [0, 1]

β(t) t ∈ [1, 2]

is a continuous, piecewise smooth path from p to r, and `(α · β) = `(α) + `(β). By definition, then, any γ
from p to r must have `(γ) ≤ `(α) + `(β), which proves the triangle inequality.
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B PROOFS OF THEOREMS 4.5 AND 4.6

B Proofs of Theorems 4.5 and 4.6

Proof. To prove Theorem 4.5, it is sufficient to show (inductively) that

F (Xt+1) ≤ F (I) F (Xt+1 − F (X∗) ≤
(

1− 1

2e2R

)t
(F (I)− F (X∗))

for all t.

Let ∆∗ = log(X
−1/2
t X∗X

1/2
t ), so f t(∆∗) = F (X∗), and h(s) = f t(s∆∗). Since F is g-convex, so is h, so we

know that

f t(0)− f t(∆∗/2R) = h(0)− h(
1

2R
) ≥ 1

2R
(h(0)− h(1)) =

1

2R
(f t(0)− f t(∆∗))

.

We know that:

Tr(∇ f t(0)∆t) +
1

2e
Tr(∇2 f t(0)(∆t ⊗∆t))

≤ Tr(∇ f t(0)
∆∗

2R
) +

1

2e
Tr(∇2 f t(0)(

∆∗

2R
⊗ ∆∗

2R
))

≤ −(f t(0)− f t(∆∗

2R
)

≤ − 1

2R
(F (Xt)− F (X∗))

as well as

Tr(∇ f t(0)∆t) +
1

2e
Tr(∇2 f t(0)(∆t ⊗∆t))

= e2Tr(∇ f t(0)∆t/e
2) +

e

2
Tr(∇2 f t(0)(

∆t

e2
⊗ ∆t

e2
))

≥ −e2(f t(0)− f t(∆t

e2
)

= −e2(F (Xt)− F (Xt+1))

Thus by rearranging terms, we get F (Xt+1)− F (X∗) ≤ (1− 1
2e2R )(F (Xt)− F (X∗)).

Proof. The proof of Theorem 4.6 is a bit more involved, so we will just go over a brief overview and the full
proof can be found in [All+18].

We know

Reg(X∗ε ) = Tr(X∗ε (X∗ε )†)Tr((X∗ε (X∗ε )†)−1)

≤ n2λmax(X∗ε (X∗ε )†)

λmin(X∗ε (X∗ε )†)

= n2(κ(X∗ε ))2

and hence
F (X∗ε ) = log Capacity(T ) + ε+ λReg(X∗ε ) ≤ log Capacity(T ) + 2ε

The following lemma, whose proof we omit, will assist in our proof of Theorem 4.6.

Lemma 1. If ∆t and Xt+1 are calculated exactly for each iteration t, then:

• F (Xt+1) ≤ F (Xt)

• F (Xt+1)− F (X∗ε ) ≤
(

1− 1
8e2 log κ0

)
(F (Xt)− F (X∗ε ))
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B PROOFS OF THEOREMS 4.5 AND 4.6

By Lemma 1, by choosing to run the algorithm for

T = O(log κ0 log(nmMε−1))

iterations, we have

F (XT )− F (X∗ε ) ≤
(

1− 1

8e2 log(κ0)

)T
(F (I)− F (X∗ε )) ≤ ε
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