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1 Introduction
Differential geometry can be viewed as a generalization of multivariable calculus that aims to discover
underlying relationships that remain no matter how we represent the space we’re working with.
In differential geometry, we extend calculus to manifolds which generalize the notions of “curve”,
“surface”, and “volume” to higher dimensions. However, as the name suggests, we focus on the
geometric nature of these objects which remain the same no matter how we define our coordinate
system.

Another equally valid way to approach differential geometry is from an algebraic perspective. Key
to the foundations of differential geometry are the algebraic systems which allow us to formally
represent manifolds and related concepts in way that does not depend on a coordinate system.

Historically, early differential geometry arose in the mid 1700s as mathematicians found that
Euclidean geometry was not the only consistent geometric system [6]. Thus, they needed a way
of describing these new systems. Differential geometry arose out of that need. Initial objectives
included methods for determining the local curvature of arbitrary manifolds. It has since developed
into a generalized way of doing calculus.

Differential geometry serves as the underpinnings of many theoretical and applied fields. Most
notably, Einstein’s theory of general relativity is a result in differential geometry. However, in physics
alone, differential geometry has more extensive applications, such as in the study of electromagnetism
and Lagrangian/Hamiltonian mechanics. Differential geometry also served as the underpinnings for
Grigori Perelman’s proof of the Poincaré conjecture (one of the seven Clay millennium problems).

On the applied side, differential geometry is used to solve problems in digital signal processing,
control theory, and computer vision [2]. Methods in differential geometry can also be used to image
process data on curved surfaces. In chemistry and biophysics, differential geometry is used to
model cell membrane structures under varying degrees of pressure. Other applications of differential
geometry are in applied fields like economics, statistics, and geology [5].

2 Understanding Tensors (try 1)
Before we can understand concepts in differential geometry and tensor calculus, we must first
understand both tensors and their basic algebraic operations. There are many definitions for these
constructs. Some are too concrete, and as a result, they miss the true meaning. However, more
big-picture definitions (see free vector space and category theoretic formulations) require too much
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background to understand. This text aims for a middle ground: we will define these concepts in a
way that generalizes only up to the level that we use them.

To provide motivation for tensors and related concepts, we will give a series of definitions where
each one is more general (and closer to the true definition) than the last. We assume that the reader
has some experience with linear algebra and calculus. We begin with a surface-level definition of
tensors.

Definition 2.1 (Tensors)
A tensor is a multidimensional array of numbers.

Although not incorrect, this definition misses the core of what a tensor truly is. However, in the
field of computer science (specifically machine learning), this is the definition that is most commonly
used. This definition does allow us to define (albeit crudely) the property of tensors known as
rank.

Definition 2.2 (Rank)
The rank of a tensor is the number of indices required to reference a scalar.

Example 2.3 (Scalars)
Scalars are rank-0 tensors as no indices are required to reference the scalars contained within
the object (after all, the object is simply a scalar). Examples of scalars include 1, π, e, and
4.7. We restrict our discussion of scalars to elements of R in this text, but in other contexts,
complex numbers may be treated as scalars.

Example 2.4 (Vectors)
Vectors are rank-1 tensors as one index variable is required to reference the scalars contained

within the object. Examples of vectors include

1
2
3

,


1.2
2.4
3.6
4.8

, and functions like ex (the coeffecients

of ex could be those of its Taylor expansion).

Example 2.5 (Matrices)
Matrices are rank-2 tensors as two index variables is required to reference the scalars contained

within the object. Examples of matrices include

1 2
2 3
3 4

, ñ1.2 2.4
3.6 4.8

ô
, and the differentiation

operator.

Remark. It is important to notice the difference between rank and dimension. The dimension of a
vector space is given by the size of its basis, or the number of elements that each tensor index can
take on. The rank of the tensor is the “dimension” of the array given by the tensor.
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3 Understanding Tensors (try 2)
As (perhaps over)emphasized earlier, this definition is very limited. The reason for this is that
tensors are inherently geometric objects. We begin by intuitively defining tensors with a real-world
example.

Example 3.1 (A Real-Life Tensor)
Pick up a pencil and point the tip at the nearest doorway. The pencil can now be considered as
tensor. With your other hand, point your thumb, index, and middle fingers in three linearly
independent directions (one could, in this scenario, assert their dominance as a member of the
physics gang).

If we imagine the pencil as a vector in R3, we might describe it as a linear combination of the
basis vectors given by your thumb, index, and middle fingers. However, the pencil is defined by
a geometric relationship: it points to the nearest doorway. Thus, even if you were to change the
basis by rotating your hand, the pencil tensor remains unchanged.

The above example leads us to the following better (but still intuitive) definition.

Definition 3.2 (Tensors)
A tensor remains invariant under a change in coordinates, and has components that change in
a special way when the basis is changed.

We have yet to discuss the latter part of this definition. We do so with another example.

Example 3.3 (Demonstrating Contravariance)

Consider the vector v = e1 + e2 + e3. We may alternatively write this vector as v =

1
1
1

. Now

suppose that we change our basis from {e1, e2, e3} to
{e1

2 ,
e2
2 ,

e3
2
}
. Since v = 2e1

2 + 2e2
2 + 2e3

2 ,

in this basis, v =

2
2
2

.
Although the basis vectors were halved in size, each of the components of v were doubled. Thus,
we call this type of transformation a contravariant transformation.

From the above example, we learned two things: the components of a vector transform contravariantly
with respect to the basis vectors, and of course, the basis vectors themselves transform covariantly
with respect to themselves. We alter our notation to keep track of this. For all objects that transform
covariantly with respect to the basis vectors, we will write their index as a subscript. Likewise, for
all objects that transform contravariantly with respect to the basis vectors, we will write their index
as a superscript. We would write, for example,

v = v1e1 + v2e2 + v3e3
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since the components v1, v2, and v3 transform contravariantly, and the basis vectors e1, e2, and e3
transform covariantly.

The notion of covariant and contravariant extends beyond simply scaling the basis: it extends to
any linear transformation. The reason behind this has much to do with reference frames. If we
were to halve the length of each of the basis vectors, in reference frame of the basis vectors, the
corresponding component of a vector that remained invariant of the change would double in size.
Likewise, if the entire basis were to rotate clockwise, in the reference frame of the basis, an invariant
vector would rotate counter-clockwise.

Before we move on to our final and most complete definition of a tensor, we’ll have to understand
some more mathematical background.

4 Vector Spaces
In the above discussion, we’ve informally assumed some properties of vectors. Since vector spaces
will be heavily utilized throughout this text, we give a formal definition below. We begin by defining
fields.

Definition 4.1 (Field)
A field F ≡ (F,+, ∗) consists of a set F , and two binary operations + : F × F 7→ F and
∗ : F × F 7→ F such that the following properties hold:

• Associativity of + and ∗: a+ (b+ c) = (a+ b) + c and a(bc) = (ab)c

• Commutativity of + and ∗: a+ b = b+ a and ab = ba

• Identity elements: ∃0, 1 ∈ F where 0 6= 1 such that a+ 0 = a and a ∗ 1 = a

• Additive inverse: ∀a ∈ F,∃(−a) ∈ F such that a+ (−a) = 0

• Multiplicative inverse: ∀a ∈ F,∃a−1 ∈ F such that a(a−1) = 1

• Distributivity: a(b+ c) = ab+ ac

Any set G with a closed binary operation + is called an abelian group if it satisfies the first four
above properties.

We are now ready to define vector spaces. We establish the following notation convention: all scalars
(belonging to some field) will be typeset using standard math font. Vectors will be written in bold
face font.

Definition 4.2 (Vector Space)
A vector space V ≡ (V,F,+, ∗) is given by a set V , a field F, an operation + : V × V 7→ V , and
an operation ∗ : F × V 7→ V such that the following properties hold:

• (V,+) is an abelian group

• Scalar multiplication: a(bv) = (ab)v

• Consistency of the multiplicative identity: 1v = v

• Distributivity: a(u + v) = au + av and (a+ b)u = au + bu
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Definition 4.3 (Linear Transformations)
Let v ∈ V . A linear transformation T : V 7→W maps vectors from some vector space V to a
vector space W such that the following properties hold:

• Scaling: T (cv) = cT (v)

• Addition: T (v + w) = T (v) + T (w)

We may instead check both constraints in one go by verifying that T (cv + w) = cT (v) + T (w).
We denote by L(V,W ) the set of all linear transformations from V to W .

With the definition of a linear transformation, we can now formally define covariant and contravariant
transformations

Definition 4.4 (Covariant and Contravariant Transformations)
Let {e1, . . . , en} be our original basis. Let {f1, . . . , fn} be our basis after applying the transfor-
mation T . An object transforms covariantly if we can express it in the new basis by transforming
it by T . In other words, the object transforms covariantly if we can represent it in the new
basis by transforming it in the same way that we transform the basis vectors. An object
transforms contravariantly if we can express it in the new basis by transforming it by the
inverse transformation T−1. Thus, objects that transform contravariantly are transformed in
the opposite way as the basis vectors.

Now that we know what vector spaces are, let’s try to prove formally that vector components
transform contravariantly. Suppose that we have some arbitrary invertible linear transformation
T ∈ L(V, V ) from a vector space V to itself. If we imagine T as a matrix, we can let Tij
index the scalars of T . Suppose that we begin with some basis {e1, . . . , en} and we transform to
{f1, . . . , fn} ≡ {T (e1), . . . , T (en)}. Let v ∈ V .

v =
n∑
j=1

vjej

=
n∑
j=1

vj
(

n∑
i=1

T−1
ij fj

)

=
n∑
i=1

Ñ
n∑
j=1

T−1
ij v

j

é
fi

So our components were mapped by the inverse transform vj 7→
Ä∑n

j=1 T
−1
ij v

j
ä
, thus proving

contravariance.

5 Covector Spaces
Now that we understand vector spaces, we can define the dual vector space also known as the
covector space.
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Definition 5.1 (The Dual Space)
Notated V ∗, the dual vector space consists of the set of linear maps L(V,F) from the vector
space V to its field F.

Example 5.2 (Row Vectors)
A row vector is an example of a covector. A row vector α can act on a vector v through the
usual row column rule for matrix multiplication:

α(v) = [α1, α2, α3]

v1

v2

v3

 = α1v
1 + α2v

2 + α3v
3

To verify that α is in fact a linear function, we just need to check that α(cu+v) = cα(u)+α(v).
This can be proven by expanding the above sum.

Example 5.3 (Integration)
Let V ≡ C([0, 1],R) be the set of continuous functions from the unit interval [0, 1] to R. The
integral

´ 1
0 f(x)dx is an element of the dual space V ∗ as

ˆ 1

0
cf(x) + g(x)dx = c

ˆ 1

0
f(x)dx+

ˆ 1

0
g(x)dx

thus making it a linear function(al).

Theorem 5.4 (The Covector Basis)
If {v1, . . . ,vn} is a basis for V , then there exists a linearly independent set

{
v1, . . . ,vn

}
where

vi ∈ V ∗ and vi(vj) = δij . Here, δij refers to the Kronecker delta symbol, which evaluates to one
if i = j and zero otherwise.

We omit the proof since it does not fall within the scope of this text, and it relies on methods
(see Zorn’s lemma) that require more mathematical background. In finite dimensional spaces, this
theorem actually guarantees that

{
v1, . . . ,vn

}
spans V ∗, thus demonstrating that it is a basis for

the dual space. It follows that in the finite dimensional case, the dimension of V ∗ is equal to that of
V . In the infinite dimensional case,

{
v1, . . . ,vn

}
is guaranteed to exist and be linearly independent,

but it does not form a basis. From here on, we limit our discussion to finite dimensional vector
spaces. We will also use this construction for defining a canonical basis. Let our initial basis be
the standard basis {e1, . . . , en}. We let the standard basis for the dual space be

{
e1, . . . , en

}
that

satisfies the Kronecker delta condition.

You might have noticed that in our first example, we indexed the α covector with subscript notation.
This is because covector components transform covariantly. The covector basis, on the other hand,
transforms contravariantly.

Proof. We first show that the covector basis transforms contravariantly. Let our initial basis for V
be {v1, . . . ,vn} and our transformed basis be {u1, . . . ,un}. Let ui = T (vi) where T ∈ L(V, V ) is
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an arbitrary (invertible) linear transformation.

ui(ui) = vi(vi) = δii = 1
ui(T (vi)) = vi(vi)

[T (ui)](vi) = vi(vi)
T (ui) = vi

ui = T−1(vi)

In line three, we make use of the fact that ui is linear, thus allowing us to pull out the linear
transformation T . In line four, we make use of that fact that this must hold for all linear
transformations T . The components of a covector wi transform contravariantly with respect to
a change in the covector basis, for the same reason that the components of a vector transform
contravariantly with respect to a change in basis (think reference frames). Since covectors themselves
transform contravariantly with respect to the basis, the components transform covariantly.

As we only work with finite vector spaces, we define explicitly the isomorphisms between the vector
spaces V and V ∗.

Definition 5.5 (The Musical Isomophisms)
We define the isomorphisms between V and V ∗. We let [ : V 7→ V ∗ and ] : V ∗ 7→ V be the
isomorphism and its inverse where

v[ = v1e1 + . . . vnen

for v ∈ V and
v] = vie1 + . . . vnen

for v ∈ V ∗. The notation [ and ] is used to denote lowering or raising indices. In music, ] is
used to denote a half-step up. Here, v] takes a covector with indices vi and transforms it to vi.
The [ operator does the opposite.

We now give geometric intuition for covectors. We can visualize vectors as physical “arrows” that
have a magnitude and direction. We can likewise visualize covectors as oriented “stacks” of lines
(see sub-figure 1 of Figure 1). We can geometrically visualize a covector eating a vector by placing
the vector in the oriented stack and counting the number of lines that it pierces (see sub-figure 2).

If we have an orthonormal basis, we can also geometrically define the special covector basis that
satisfies the Kronecker delta condition. For each basis vector, we can find its associated basis
covector by considering the oriented stack where the separation between the lines is equal to the
magnitude of the basis vector, and the orientation is given by the orientation of the basis vector.
Given this construction, we can split a covector into its components (see sub-figure 3).

Lastly, we can see visually how covectors are linear operators, as we can let the covector independently
eat each of the basis vectors and the summed result will be equal to the original result (see sub-figure
4).

We conclude this section on covectors by introducing the double dual vector space.
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Figure 1: Covectors as Geometric Objects [4]

Definition 5.6 (Double Dual)
The double dual V ∗∗ of a vector space V is equal to (V ∗)∗, or L(V ∗,F) = L(L(V,F),F).

We now show a natural isomorphism ϕ between V and V ∗∗. Let ϕ(v) = v̂. We define v̂ by letting
v̂(v∗) = v∗(v) for v∗ ∈ V ∗. The reason we care about the double dual is because we do not usually
think of vectors as acting on some objects. However, elements of the double dual act on elements of
the dual. We introduce this isomorphism as a way of noting explicitly that vectors can be thought
of as objects that act on dual vectors.

Remark. The isomorphism is called a natural isomorphism because it does not depend on a coordinate
system–it can be defined entirely with maps.

6 Understanding tensors (try 3)
We now have all (but one) of the mathematical tools necessary to complete our definition of tensors.

Definition 6.1 (Tensors)
A tensor is given by the tensor product of vectors and covectors.

Looks like we have to define this “tensor product” thing now. Keep in mind that the following
definition is not the most general one (see monoidal categories), but it’ll suffice for what we’re going
to be doing. The tensor product allows us to string together vectors and covectors together to create
a larger multilinear map.

In the previous section we learned that elements of V ∗ “eat” vectors (elements of V ) and make
scalars. We also learned that elements of V ∗∗ (also known as V ) eat covectors to make scalars. So
what if we wanted to make a map that eats a vector and a covector to make a scalar? To do that,
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we’d need a covector to eat the vector, and a vector to eat the covector. We combine these two
using the tensor product.

Formally, let T pq = ⊗p
i=1 V ⊗

⊗q
i=1 V

∗ be the set of all (p, q) tensors. What we mean by this is
that any tensor T ∈ T pq has p contravariant components and q covariant components (remember
that vector components are contravariant and covector components are covariant). Since T has p
elements of the double dual, it will act on p elements of the dual. Since T has q elements of the
dual, it will act on q elements of the vector space. Thus T pq ' L(×p

i=1 V
∗ ××q

i=1 V,F).

Remark. It might seem as though the spaces V ⊗ V and V × V should be isomorphic. This is most
certainly not the case–V ⊗ V is much larger. This is because V ⊗ V is the space of all bilinear maps
from V ∗ × V ∗ 7→ F. There are some bilinear maps that cannot be expressed as the tensor product
of two vectors, rather only as a linear combination of them.

Let’s look at how some v⊗w∗ ∈ V ⊗ V ∗ acts on some covector and vector pair (x∗,y).

[v⊗w∗](x∗,y) = x∗(v)w∗(y)

Now let’s look at the dimension of the space V ⊗ V . Any element of V ⊗ V can be formed from the
linear combination of its basis. But what is its basis?

We know that

v⊗w =
(∑

i

viei

)
⊗
(∑

i

wiei

)
=
∑
i

∑
j

(viei)⊗ (wjej)

=
∑
i

∑
j

viwj(ei ⊗ ej)

What we’ve just shown is that the set of all ei ⊗ ej can be used as a basis for V ⊗ V . Thus,
dimV ⊗ V = (dimV )2 as for each basis vector ei, we add all of the basis vectors corresponding
to ei ⊗ ej . It follows that if we were to take the tensor product of two arbitrary vector spaces
V ⊗W , dimV ⊗W = (dimV )(dimW ). Contrast this with the dimension of V ⊕W (think Cartesian
product, but with the algebraic structure carried over as well) which is given by dimV + dimW .

Remark. You might be wondering at this point why we care so much about linear transformations. If
we’re eventually going to do calculus, then shouldn’t we care about arbitrary transformations? The
reason behind this is similar to the fundamental assumption made in calculus: that “well-behaved”
functions look like lines when you zoom in really close. Thus, if we assign a linear transformation to
every point, then give some initial point, we can recreate the function. This should sound familiar...

7 An Extended Example: TheMetric Tensor
The metric tensor is a very useful construct in differential geometry. While its applications are not
within the scope of this paper, we include its definition as an extended example of the concepts
defined above. Before we introduce the metric tensor, we first introduce a standard system of
notation that cleans up a lot of our math.
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Definition 7.1 (Einstein Summation Convention)
As we do arithmetic with tensors, we end up with a lot of sums. Einstein summation convention
aims to eliminate these sums. Suppose we have some sum v = ∑

viei. In Einstein notation, we
drop off the sum, giving v = viei. It is implied in Einstein notation that if one side has fewer
indices than the other, the extra indices are being summed over.

Using Einstein notation also allows us to create rules that make computing these sums easier.
For example, suppose we have the sum notation expression Tijv

kwlδikδ
j
l . We can instantly

simplify it by
Tijv

kwlδikδ
j
l = Tijv

iwj

We can cancel out the upper index k and lower index k and replace the upper index with an i,
since when we sum over all k, we only get 1 when k = i. We can do something similar when
multiplying tensors together. If the same index appears as a lower and upper index, we can
cancel them out. We might say, for example, that Cik = AijB

j
k. From here on, we will be using

Einstein notation.

As we start doing calculus with tensors and move our discussion into differential geometry, one
fundamental tensor that we’ll run into a lot is the metric tensor. The metric tensor is a type
(0, 2) tensor. Recall that this means that we have 0 contravariant components and two covariant
components. Thus, the metric tensor is an element of V ∗ ⊗ V ∗, and acts on V × V .

Definition 7.2 (Metric Tensor)
For a type (0, 2) tensor g to be a metric, we require that the following properties hold:

1. g is bilinear: we get this for free since we’ve already defined it as a (0, 2) tensor

2. g is symmetric: g(x,y) = g(y,x)

3. g is nondegenerate: If for all y, g(x,y) = 0, x = 0.

We can describe g in terms of its components. The g tensor is a type (0, 2) tensor. We can therefore
expand g as

g = gij(ei ⊗ ej)
Given this, we can interpret the conditions listed above as properties that the matrix of coefficients
must have. The property of symmetry ensurest that gij = gji. The nondegeneracy constraint ensures
that g must be invertible. Proofs of these properties are left as exercises for the reader.

We now consider how g transforms under a change of basis. Consider some element T ∈ V ∗ ⊗ V .
Note that elements of this space eat a vector and a covector to create a scalar. However, if we input
only a vector, we will get back a vector, as the covector component acts on the vector while the
vector component does nothing. Thus, T is a (1, 1) tensor. Suppose that we have some initial basis
{e1, . . . , en} that we transform to {f1, . . . , fn} ≡ {T (e1), . . . , T (en)}.

g = gij(ei ⊗ ej)
= gij(T ikfk ⊗ T

j
l f l)

= T ikT
j
l gij(f

k ⊗ f l)
= T ikT

j
l gij(f

k ⊗ f l)
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The components transform by not one, but two forward transformations (gij 7→ T ikT
j
l gij). This

should make sense, since g has two covariant components.

The metric tensor gets its name from the fact that we can use it to compute the length of a vector
(or alternatively the distance between two points) in our space.

Definition 7.3 (Length)
Given a metric g, the length of a vector v is given by

»
g(v,v).

When we’re measuring the length of a vector v ∈ Rn in Euclidean space, we take the square root of
the sum of the squares of the components

‖v‖ =

Ã
n∑
i=1

(vi)2 =
√

v · v

The dot product is a motivating example of a metric. In fact, it is the simplest example of a metric:
the components of its corresponding metric tensor are given by the Kronecker delta gij = δij . We
prove this below:

v · v = g(v,v)
= gijv

jvi

= δijv
jvi

= vivi

We’ve actually already dealt with different metric tensors in physics when we were discussing
relativity. In classical physics we work in four dimensions (given by space and time). When we
changed reference frames, we used the velocity and time transformation rules that preserve the
Euclidean lengths of our space and time parameters. These transformations were called Galilean
transformations. At relatavistic speeds, our velocity and time transformations rules (called Lorentz
transformations) actually preserve a different metric called the Minkowskimetric (this name should
sound familiar). Discussion of these specific examples goes beyond the scope of this text, but will
serve as good supplemental material.

8 The Exterior Algebra
In this section, we define a special class of tensors that make up the exterior algebra. The exterior
algebra will form the foundations for when we start doing calculus with tensors. We’ll start by
defining the exterior algebra for type (0, 2) tensors. Recall that these tensors are elements of V ∗⊗V ∗

and takes as input two elements of V to return a scalar. The exterior algebra is constructed from
special tensors called alternating tensors.

Definition 8.1 (Alternating (0, 2) Tensors)
An alternating type (0, 2) tensor is a tensor T such that T (x,y) = −T (y,x) for all vectors x
and y. It follows that for such tensors, Tij = −Tji and Tii = 0. We denote by Λ2(V ∗) the set of
alternating (0, 2) tensors. We call it (for reasons given later) the second exterior power of V .
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Remark. So why do we care about alternating tensors in calculus? While this concept is explored in
a lot more depth later, we give an intuitive explanation here. Recall from multivariable calculus that
when we do line integrals, surface integrals, and volume integrals, we require that the object that
we’re integrating over is orientable. Alternating tensors are important in calculus as they define the
geometric objects that are orientable. There’s a lot of geometric intuition behind the construction
of alternating tensors. We cover the exterior algebra from an entirely algebraic perspective in this
section. In the next section, we introduce the geometric interpretations.

With no context whatsoever, we’re going to independently define the wedge product for type (0, 2)
tensors (we give the general definition later).

Definition 8.2 (The Wedge Product)
The wedge product (denoted ∧) is a binary operation on covectors given by

v1 ∧ v2 = v1 ⊗ v2 − v2 ⊗ v1

which returns a type (0, 2) tensor. We get immediately from this definition that

v1 ∧ v2 = −
Ä
v2 ∧ v1ä

We first show that whenever we take the wedge product of two vectors, we end up with an alternating
type (0, 2) tensor. Let u1 and u2 be vectors in V . Let’s see how the tensor v1 ∧ v2 acts on these
vectors: î

v1 ∧ v2ó (u1,u2) =
î
v1 ⊗ v2 − v2 ⊗ v1ó (u1,u2)

=
î
v1 ⊗ v2ó (u1,u2)−

î
v2 ⊗ v1ó (u1,u2)

= v1(u1)v2(u2)− v2(u1)v1(u2)
= v2(u2)v1(u1)− v1(u2)v2(u1)
= −

Ä
v1(u2)v2(u1)− v2(u2)v1(u1)

ä
= −

Äî
v1 ⊗ v2ó (u2,u1)−

î
v2 ⊗ v1ó (u2,u1)

ä
= −

î
v1 ⊗ v2 − v2 ⊗ v1ó (u2,u1)

= −
î
v1 ∧ v2ó (u2,u1)

Thus, by switching the order of the vector argument u1 and u2, we showed that the result was
negated. Thus the wedge product returns an alternating tensor. Just as we showed earlier that the
ei ⊗ ej formed the basis of V ⊗ V , we show now that the ei ∧ ej form the basis of Λ2(V ∗). Suppose
we have some tensor T ∈ Λ2(V ∗)

T =
n∑
i=1

n∑
j=1

Tij(ei ⊗ ej)

=
∑
j<i

Tij(ei ⊗ ej) +
∑
j=i

Tij(ei ⊗ ej) +
∑
j>i

Tij(ei ⊗ ej)
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=
∑
j<i

Tij(ei ⊗ ej) + 0 +
∑
j>i

Tij(ei ⊗ ej)

=
∑
j<i

Tij(ei ⊗ ej) +
∑
i>j

Tji(ej ⊗ ei)

=
∑
j<i

Tij(ei ⊗ ej)−
∑
i>j

Tij(ej ⊗ ei)

=
∑
j<i

Tij(ei ⊗ ej − ej ⊗ ei)

=
∑
j<i

Tij(ei ∧ ej)

In the third line, we use the fact that Tii = 0 in any alternating tensor, thus allowing us to eliminate
the middle sum. Since the names of our index variables i and j don’t matter, we swap them in the
fourth line. In the fifth line, we make use of the fact that Tji = −Tij . Since summing over i > j
is the same as summing over j < i, we can collect like terms. What we’ve shown here is that any
alternating (0, 2) tensor can be written as a linear combination of the ei ∧ ej . Thus, these tensors
form a basis for Λ2(V ∗). Note that while there are n2 linearly independent ei ⊗ ej , there are only(n

2
)
linearly independent ei ∧ ej as ei ∧ ej = −(ei ∧ ej).

We now extend these definitions to the general case of type (0, q) tensors. Before we can do that,
we have to define permutations.

Definition 8.3 (Permutations)
A permutation σ : S 7→ S of a set S is a rearrangement of its elements. More formally, it is a
bijection from the set to itself. For example, consider the set {1, 2, 3}. We might rearrange its
elements to be 1, 3, 2. To accomplish this, we define the function σ such that σ(1) = 1, σ(2) = 3,
and σ(3) = 2.

Associated with any permutation is its sign, which we denote by sgn(σ). Suppose that we
wanted construct the permutation in successive steps by swapping two elements of the set at a
time. In the above example, we can construct the permutation in one step by simply swapping 3
and 2. We let sgn(σ) = 1 if the number of steps necessary to construct the permutation is even,
and we let sgn(σ) = −1 if the number of steps necessary to construct the permutation is odd.

We use permutations to define alternating (0, q) tensors.

Definition 8.4 (Alternating (0, q) Tensors)
We denote by Λq(V ∗) the set of alternating (0, q) tensors. We similarly call Λq(V ∗) the qth
exterior power of V . An alternating (0, q) tensor T satisfies the property that for all permutations
Let σ(1), . . . , σ(q) of the indices 1, . . . , q.

T (v1, . . . ,vq) = sgn(σ)T (vσ(1), . . . ,vσ(q))

Thus, every time we swap two vectors in the input of T , the sign of the result flips. If we were
to just swap two vectors as we did with type (0, 2) tensors, the sign would flip once. If we
were to swap another two vectors, the sign would flip again. It is this behavior that gives these
tensors the name “alternating”, as the sign alternates upon any swap of two vectors.
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The ei∧ej gave the basis of Λ2(V ∗). We now provide the generalization for this without justification
(the proofs are tedious and resemble the one we did for Λ2(V ∗)). We claim that the basis for Λq(V ∗)
consists of the

(n
q

)
linearly independent ei1 ∧ ei2 ∧ · · · ∧ eiq . We note that the highest exterior power

we can raise V to is q = n as for q > n,
(n
q

)
= 0. By convention, we let Λ1(V ∗) = V ∗ and Λ0(V ∗) = F

where F is the field of the vector space. We do this so that we obey the rule that dim(Λk(V ∗)) =
(n
k

)
.

So far, we have only used the wedge product as a binary operation on covectors. However, it can in
fact act as a binary operation on any two alternating tensors. For example, suppose that we have
some tensor P ∈ Λ2(V ∗) and a tensor Q ∈ Λ3(V ∗). Let’s try and compute P ∧Q.

P ∧Q =
Ä
Pij(ei ∧ ej)

ä
∧
Ä
Qklm(ek ∧ el ∧ em)

ä
= PijQklm

Ä
(ei ∧ ej) ∧ (ek ∧ el ∧ em)

ä
= PijQklm

Ä
ei ∧ ej ∧ ek ∧ el ∧ em

ä
In the second line we used the bilinearity of the wedge product. In the third line we used the fact
that the wedge product is associative. While we have justified that the wedge product is bilinear, as
it is generated from the tensor product, we have not justified why the wedge product is associative.
While this justification isn’t too difficult, it is beyond the scope of this text. Using these properties,
we were able to wedge together an element of Λ2(V ∗) and an element of Λ3(V ∗) to get an element
of Λ5(V ∗).

In general, wedging together elements of Λp(V ∗) and Λq(V ∗) gives us an element of Λp+q(V ∗). Note
that since field elements belong to Λ0(V ∗), multiplying by a field element is the same as wedging by
a field element. More formally, for α ∈ Λk(V ∗)

cα = c ∧α

as c ∈ Λ0(V ∗) since the tensor (c ∧α) ∈ Λk+0(V ∗) = Λk(V ∗).

We now have the necessary machinery to define the exterior algebra. The exterior algebra gets its
name because we can wedge together elements of some exterior power Λk(V ∗) we get an element of
a different space Λl(V ∗). The exterior algebra consists of all of the elements that we could possibly
wedge together.

Definition 8.5 (Exterior Algebra)
Let V be a vector space of dimension n. The exterior algebra

Λ(V ∗) = Λ0(V ∗)⊕ Λ1(V ∗)⊕ Λ2(V ∗)⊕ Λ3(V ∗)⊕ · · · ⊕ Λn(V ∗)

is the aggregation of all of the exterior powers.

We reiterate that in this section we provide no geometric intuition for the constructs we define – we
will provide this intuition in the next section. We now define algebraically an important property of
exterior powers called Hodge duality.
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Definition 8.6 (Hodge Duality)
Recall that the dimension of Λk(V ∗) =

(n
k

)
. Note that

(n
k

)
=
( n
n−k

)
. Thus, dim(Λk(V ∗)) =

dim(Λn−k(V ∗)). It follows that Λk(V ∗) is isomorphic to Λn−k(V ∗). We call these spaces Hodge
duals. We define the Hodge star as an operator that acts on elements of the exterior algebra
and maps it to the corresponding element of its Hodge dual. Formally, if we let T be an element
of Λk(V ∗), we denote by ?T its corresponding element in Λn−k(V ∗).

9 Tangent and Cotangent Spaces
We now transition to doing calculus with tensors. Consider this section as a large extended example
of the concepts above in much the same way that differential equations are an application of linear
algebra (in fact, in exactly the same way). In this section, we will work in R3, but all of the concepts
can be easily extended to n dimensions.

We motivate this section by considering the fundamental assumption of calculus: that smooth
objects “look linear” when you zoom in really close. We formally call these smooth objects manifolds.
We call the linear approximation of the manifold when we zoom in to a point the tangent space of
the manifold.

Example 9.1 (The Tangent Space of a Function)
The simplest type of smooth manifold that we’ve dealt with extensively are real-valued differen-
tiable functions f : R 7→ R. When we zoom in really close to the function at some point f(x0),
we get the tangent line of the function (given by the derivative of f). The tangent space of the
function f is just the tangent line. Thus, it is a one-dimensional vector space.

Example 9.2 (The Tangent Space of a Surface)
In multivariable calculus, we found the tangent plane of a surface at a given point. This
plane gives a linear approximation of the surface. Thus, the tangent space of a surface is a
two-dimensional vector space.

Now that we’ve established what tangent spaces are, let’s show more formally that tangent spaces
are in fact vector spaces.

To show that the tangent space is a vector space, we need to establish its basis. We first do this for
the simplest type of manifolds that we deal with in multivariable calculus: 2-dimensional surfaces.
Suppose we have a surface z = f(x, y). We can get its tangent plane as

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

As z is a function of x and y, a vector in the tangent plane can be associated with a choice of
c1 = (x− x0) and c2 = (y − y0) where offset our x and y position by the vector

v = c1
∂f

∂x
+ c2

∂f

∂y
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Thus, the tangent space is a 2-dimensional vector space with a basis given by
¶
∂f
∂x ,

∂f
∂y

©
. In the

general case where z = f(x1, . . . , xn), this argument would extend to show that the tangent space
of this surface is the n-dimensional space with the basis

¶
∂f
∂x1 , . . . ,

∂f
∂xn

©
.

Figure 2: A sphere’s tangent space [3]

But what if we don’t know the function f? If we have only a bug-eye view of the manifold, how can
we determine the tangent space? A way to visualize this is to imagine that we are walking along
the surface of the earth, and we point in some direction v. If we were to continue going straight in
the direction of v, we would end up in outer space since v is an element of the tangent space of the
Earth at the point where we are. We don’t know the equation for the surface of the Earth, but
we still wish to describe the components of v. Another way to consider this problem is through
stereographic projection. Suppose that we have flat map (like a Mercator map) of the Earth. If all
we have is the map, and we don’t have an explicit description of the surface, what are our basis
directions at any given point?

The way we solve this problem is by letting the basis vectors be the partial differentiation operators¶
∂
∂x1 . . .

∂
∂xn

©
themselves. Since partial differentiation is a linear operator, we can apply the c1, . . . , cn

constants before we act on some function f . Think of this in much the same way that we define the
linear L operator in a differential equations class. These operators define what direction means at a
local scale.

If this discussion didn’t make sense, feel free to think of the basis vectors as
¶
∂f
∂x1 , . . . ,

∂f
∂xn

©
instead

of
¶

∂
∂x1 . . .

∂
∂xn

©
. The only purpose of using the latter basis is to extend these concepts to intrinsic

geometries, or manifolds that we do not have an explicit description for. In physics (specifically
when we’re talking about concepts like general relativity), we use intrinsic geometries extensively, as
we only have a bug-eye view of spacetime. We have no way to get an explicit description of the
shape of spacetime, but we can use local directions to determine its curvature.

We now define the covector basis. Recall that we want to find a covector basis
{
e1, . . . , en

}
such

that ejei = δji . As our basis vectors are orthonormal, geometrically (recall from Figure 1), the basis
covector associated with ∂

∂xi should be an oriented stack where the separation distance is equal to
the magnitude of ∂

∂xi (which is infinitesimally small) and its orientation should the same as ∂
∂xi .

We let our covector basis be given by
{
dx1, . . . , dxi

}
. We show intuitively that this basis satisfies

the conditions stated above. When we write an integral in two dimensions, for example
´
f(x)dx,

we think of dx as a “little change” in the x direction (which is the same as the ∂
∂x direction since flat

2-d space is not curved). Thus, we may think of dx as a stack oriented in the ∂
∂x direction where
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the separation distance is in an infinitesimal. The dx covector is constant, as in two dimensions, for
example, the density and orientation of the lines remain constant across all x and y.

To summarize, on the tangent space of a manifold, the vector basis is given by the set of partial
differentiation operators

¶
∂
∂x1 . . .

∂
∂xn

©
and the covector basis is given by the set of differentials{

dx1, . . . , dxn
}
. We denote by TpM the tangent space at some point p on a manifold M , and we

denote by T ∗
pM the cotangent space at some point p on a manifold M .

10 The Exterior Calculus
We now put together everything discussed in the previous sections to define the exterior calculus,
which is a generalization of what we do in multivariable calculus. The exterior calculus is built up
from the exterior algebra of the cotangent space Λ(T ∗

pM). But what does this mean?

We first give intuitive explanations for each of the exterior powers of T ∗
pM . We assume that the

dimension of T ∗
pM is 3 to simplify explanations, but all concepts generalize.

Definition 10.1 (0-forms)
Let’s start with the zeroth exterior power Λ0(T ∗

pM). These are just elements of the field. We
would like the field elements of these vector spaces to be R, as usual. However, since this space
is specific to point p, we can also allow scalar functions f : M 7→ R as by plugging in p, we
still get scalar values. This is similar to how in differential equations with solutions y, we treat
functions ρ(x) sort of like constants. As scalar functions belong to Λ0(T ∗

pM), we call them
0-forms.

Definition 10.2 (1-forms)
Now we move to the first exterior power Λ1(T ∗

pM) = T ∗
pM . It’s dimension is given by

(3
1
)

= 3, and
the basis vectors are simply the basis vectors of T ∗

pM , given by
{
dx1, dx2, dx3}. Geometrically,

as described in the previous section, these represent differentials in each of the 3 directions. We
call elements of Λ1(T ∗

pM) 1-forms.

Definition 10.3 (2-forms)
The dimension of the next exterior power Λ2(T ∗

pM) has dimension
(3

2
)

= 3. As defined in
Section 8, the basis of Λ2(T ∗

pM) is given by
{
dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1}. But what do

the elements of this basis mean geometrically? As hinted at earlier, since the dxi ∧ dxj are
alternating tensors, they have an orientation. Geometrically, these tensors are simply oriented
plane segments. We call elements of Λ2(T ∗

pM) 2-forms

Definition 10.4 (3-forms)
The dimension of the last exterior power Λ3(T ∗

pM) =
(3

3
)

= 1. The basis of this space is simply{
dx1 ∧ dx2 ∧ dx3}. Elements of this space represent oriented volume segments. We call elements

of Λ3(T ∗
pM) 3-forms.

We now give geometric intuition for Hodge duality and the Hodge star operator. In our setup,
Λ1(T ∗

pM) is dual to Λ2(T ∗
pM) and Λ0(T ∗

pM) is dual to Λ3(T ∗
pM) since n = 3. This holds geometrically
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Figure 3: The one-form, two-form, and three-form bases [1]

as for any plane we can associate a unique normal vector, and for any oriented volume segment we
can associate a unique scalar corresponding to the segment’s volume. For any 0-form f , we let ?f
be the volume segment with volume f . For any 2-form X, we let ?X denote its normal vector.

Formally,
?f = f(dx1 ∧ dx2 ∧ dx3)

and vice versa. Similarly,

?(α1dx
1 + α2dx

2 + α3dx
3) = α1(dx2 ∧ dx3) + α2(dx3 ∧ dx1) + α3(dx1 ∧ dx2)

and vice versa.

11 Exterior Differentiation
With this, we can now start doing calculus with elements of Λ(T ∗

pM). We define the exterior
derivative which extends the concept of a differential to higher order differential forms.

Definition 11.1 (Exterior Derivative)
The exterior derivative is an operator d that acts on elements of Λ(T ∗

pM) such that the following
hold

• d2 = 0

• For 0-forms f ,
df := ∂f

∂x1dx
1 + . . .

∂f

∂xn
dxn

gives the differential of f

• For any p-form α and q-form β,

d(α ∧ β) = d(α) ∧ β + d(β) ∧α

The first property comes from the fact that the differential of a differential goes to 0. The
second property establishes that taking the exterior derivative of 0-forms is the same as finding
the 0-form’s differential (which is something we did multivariable calculus). The last property
establishes the analogue of the product rule for wedge products. It is this property that allows
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us to extend the differential to higher order forms. Since wedge products give alternating
tensors, we can rewrite the third property as

d(α ∧ β) = d(α) ∧ β + (−1)p(α ∧ d(β))

We get the (−1)p factor by making p “swaps” to get the form α in front of the form d(β).

Let’s take the exterior derivative of a 0-form f . By our definition,

df = ∂f

∂x1dx
1 + ∂f

∂x2dx
2 + ∂f

∂x3dx
3

The exterior derivative of a 0-form resembles the gradient. Recall that the gradient

∇f =
≠
∂f

∂x1 ,
∂f

∂x2 ,
∂f

∂x3

∑
Thus, the components of df are the same as the components ∇f . However, ∇f is a vector and df is
a covector. We can relate the two by the musical isomorphisms:

∇f = (df)]

Since df is a covector, let’s consider what happens when we let it act on some vector u.

df(u) =
ï
∂f

∂x1dx
1 + ∂f

∂x2dx
2 + ∂f

∂x3dx
3
ò Å
u1 ∂

∂x1 + u2 ∂

∂xn
+ u3 ∂

∂x3

ã
= ∂f

∂x1u
1 + ∂f

∂x2u
2 + ∂f

∂x3u
3

Note that the directional derivative

∇f · u = ∂f

∂x1u
1 + ∂f

∂x2u
2 + ∂f

∂x3u
3

Thus,
∇f · u = df(u)

It follows that the exterior derivative of a 0-form, when applied on a vector u gives its directional
derivative.

Now let’s take the exterior derivative of a 1-form α. We use Einstein sum notation.

d(α) = d(αidxi)
= d(αi ∧ dxi)
= d(αi) ∧ dxi − αi ∧ d(dxi)
= d(αi) ∧ dxi − 0

= ∂αi
∂xj

dxj ∧ dxi

Let’s rewrite this final line without using Einstein notation

∂α1
∂x1 dx

1 ∧ dx1 + ∂α1
∂x2 dx

2 ∧ dx1 + ∂α1
∂x3 dx

3 ∧ dx1+



Differential Geometry and Tensor Calculus Naveen Durvasula
Page 20

∂α2
∂x1 dx

1 ∧ dx2 + ∂α2
∂x2 dx

2 ∧ dx2 + ∂α2
∂x3 dx

3 ∧ dx2+

∂α3
∂x1 dx

1 ∧ dx3 + ∂α3
∂x2 dx

2 ∧ dx3 + ∂α3
∂x3 dx

3 ∧ dx3

By the definition of the wedge product, dxi ∧ dxi = 0. Furthermore, we also know that dxi ∧ dxj =
−(dxj ∧ dxi). We can thus simplify the above to the following

0− ∂α1
∂x2 dx

1 ∧ dx2 + ∂α1
∂x3 dx

3 ∧ dx1+

∂α2
∂x1 dx

1 ∧ dx2 + 0− ∂α2
∂x3 dx

2 ∧ dx3+

− ∂α3
∂x1 dx

3 ∧ dx1 + ∂α3
∂x2 dx

2 ∧ dx3 + 0

which further reduces to

d(α) =
Å
∂α3
∂x2 −

∂α2
∂x3

ã
dx2 ∧ dx3 +

Å
∂α1
∂x3 −

∂α3
∂x1

ã
dx3 ∧ dx1 +

Å
∂α2
∂x1 −

∂α1
∂x2

ã
dx1 ∧ dx2

This should look quite similar to something else that we worked with extensively in physics and
multivariable calculus. Recall that the curl of a vector valued function F is given by

∇× F =
ÆÇ

∂F 3

∂x2 −
∂F 2

∂x3

å
,

Ç
∂F 1

∂x3 −
∂F 3

∂x1

å
,

Ç
∂F 2

∂x1 −
∂F 1

∂x2

å∏
Thus,

∇× F =
Ä
?dF[

ä]
Since we applied several transformations, let’s break it down. We applied the [ operator to F to
make it a covector. We then took the exterior derivative. However, at this point, our result is
an element of Λ2(T ∗

pM). We apply the Hodge star to convert this oriented plane segment to its
corresponding covector. We then apply the ] operator to make our output a vector.

The exterior derivative of a 0-form gives us the gradient. The exterior derivative of a 1-form gives
us the curl. We now take the exterior derivative of a 2-form β.

d(β) = d(β1dx
2 ∧ dx3 + β2dx

3 ∧ dx1 + β3dx
1 ∧ dx2)

= d(β1dx
2 ∧ dx3) + d(β2dx

3 ∧ dx1) + d(β3dx
1 ∧ dx2)

= d(β1) ∧ dx2 ∧ dx3 + d(β2) ∧ dx3 ∧ dx1 + d(β3) ∧ dx1 ∧ dx2

= ∂β1
∂x1dx

1 ∧ dx2 ∧ dx3 + ∂β2
∂x2dx

1 ∧ dx2 ∧ dx3 + ∂β3
∂d

x1 ∧ dx2 ∧ dx3

=
Å
∂β1
∂x1 + ∂β2

∂x2 + ∂β3
∂x3

ã
dx1 ∧ dx2 ∧ dx3

We go from the second line to the third line by using the fact that d2 = 0. We go from the third
line to the fourth line by using the fact that dxi ∧ dxi = 0. Again, this should look familiar. Recall
that the divergence of a vector field F is given by

∇ · F = ∂F 1

∂x1 + ∂F 2

∂x2 + ∂F 3

∂x3
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Thus,
∇ · F = ?d ? F[

Let’s break this one down. First, we use the [ transformation to change F into a covector. We
then use the Hodge star to turn our result into a 2-form. Next, we take the exterior derivative. To
remove the dx1 ∧ dx2 ∧ dx3 term, we take the Hodge star again, giving us a scalar.

12 Generalized Stokes’ Theorem
We tie everything together in this last section on generalized Stokes’ theorem. Let M be a manifold
and ω be an element of the exterior algebra Λ(M). Stokes’ theorem states thatˆ

∂M
ω =
ˆ
M
dω

where ∂M denotes the boundary of M , and dω refers to the exterior derivative of the differential
form ω. While we won’t prove the theorem, we will apply the results we obtained in the previous
section to show that this theorem gives us the fundamental theorem of calculus, classical Stokes’
theorem, and divergence theorem.

Let’s first consider the simple case where M is a one dimensional interval and ω is a 0-form. Note
that this is the only possible scenario as in this case

Λ(T ∗
pM) = Λ0(T ∗

pM)⊕ Λ1(T ∗
pM)

since n = 1, as M is a one dimensional interval. Thus, the only forms that can be differentiated are 0
forms. In this case, the boundary ∂M consists only of the endpoints of the interval M . However, the
two boundary points are oriented in opposite directions. Thus, integrating ω across the boundary
is equivalent to computing the difference of ω at the end points. Since ω is a 0-form, its exterior
derivative dω is its differential. Thus, this is exactly the fundamental theorem of calculus.

Now let’s consider the case where M is a two dimensional manifold. We now consider differential
forms ω that belong to Λ1(T ∗

pM). Recall that classical Stokes’ theorem states that˛
∂M

F · dr =
¨
M
∇× F · dS

Let ω = F · dr. We note that ω is simply a 1-form

ω = F · dr = F1dx
1 + F2dx

2 + F3dx
3

In the previous section we showed that

dω = (∇× F)1dx
2 ∧ dx3 + (∇× F)2dx

3 ∧ dx1 + (∇× F)3dx
1 ∧ dx2 = ∇× F · dS

Thus, we get that this is a special case of Stokes’ theorem.

We repeat the same process to get divergence theorem. Let M be a 3-dimensional manifold and ω
belong to Λ2(T ∗

pM). Divergence theorem states that‹
∂M

F · dS =
˚

M
∇ · F dV

Just as before, ω = F · dS is an arbitrary 2-form. In the previous section, we showed that

dω = (∇ · F)dx1 ∧ dx2 ∧ dx3 = (∇ · F)dV

Thus, we again see that divergence theorem is a special case of Stokes’ theorem.
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