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1 Introduction and Related Work

As machine learning models increasingly contribute to the bottom line of modern enter-
prise, scandals involving the misuse of personal and sensitive data have also grown more
common. Indeed, the means by which corporations acquire data often lack transparency,
and it is clear that in many cases, users are not compensated despite the potentially large
economic benefit derived from the data that they provide.

To make it easier for corporations to acquire data necessary for the operation of key
services in a way that allows data owners to be fairly compensated, we propose a two-
sided consumer data marketplace. In our model, a large collection of users each possess an
i.i.d sample of the same signal. One example would be the user’s location data. Each user
then sets a price to exchange their data with a potential seller. This price corresponds to
the privacy cost they incur by revealing their data. We are then interested in market mech-
anisms that satisfy five properties: individual rationality, incentive compatibility, surplus
efficiency, privacy, and representativeness. A mechanism satisfies the privacy constraint
if it does not access user data while computing an allocation. The representativeness con-
straint is satisfied if the market is further able to guarantee that the sample it returns is
representative of the whole population. Such a guarantee may be hard to make naively if
the prices that the sellers post are correlated with the data samples themselves.

There is some literature on data marketplaces [8, 3, 6, 7, 1, 2], and there have been some
Blockchain-based implementations of these marketplaces [4, 9, 5]. None of these market-
places allow sellers to set their own price. Instead, sellers must choose to fully opt in or
out, and are given Shapley fairness guarantees. Only in [8] is there a competitive equilit-
brium set by all market participants, as in their setting, all participants are concurrently
buyers and sellers. On the flip side, multiple of these marketplaces aim to maximize
revenue, and thus do not aim to maximize surplus or welfare. Furthermore, these mar-
ketplaces do not satisfy the privacy property. Indeed, [1] and [8] consider mechanisms
that involve “data rationing”, or the controlled perturbation of data in order to guarantee
certain economic outcomes. If user data is stored in a decentralized manner, the form of
the data is difficult to work with, or if the reaction of a buyer to such a perturbation is
difficult to know apriori, then such methods can be inefficient or impractical. We seek to
address these concerns in our paper.
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2 MODEL

In Section 2, we formally define our model, including the five aforementioned prop-
erties. In Section 3, we show that a unique deterministic mechanism exists that satisfies
all five properties. This mechanism is an extension of the well-known VCG mechanism.
In Section 4, we show that the deterministic mechanism has a fundamental limit in its
ability to satisfy representativeness constraints. Indeed, we show that as the number of
sellers becomes large, it becomes impossible to satisfy any reasonable request for repre-
sentativeness deterministically. We then provide a random mechanism, and prove that it
is able to satisfy any representativeness constraint, while also meeting a baseline surplus
guarantee. Section 5 concludes.

2 Model

We consider a model where there are n sellers, each possessing an i.i.d sample Xi of a
random element X : Ω → D with law µ, and a single buyer1 that aims to collect s samples
of X. In our setting, we imagine n ≫ s. Each seller i ∈ [n] values their sample at ci ∈ R>0,
and posts a price pi ∈ R>0 to the market. The cost ci denotes the privacy cost that seller
i incurs by giving their data to the buyer. The buyer obtains value V from obtaining
any sample of size s, and posts a bid B to the market. The market then selects a subset
of samples S ⊂ [n] where |S| = s, in addition to a collection of payments {ti}i∈S. The
buyer then pays ∑i∈S ti and obtains the collection of samples {Xi}i∈S. Seller i receives
ti in payment, and incurs a cost of ci for releasing their data to the buyer. Formally, the
buyer and sellers have quasi-linear utilities, given by

U(V, B) = V − ∑
i∈S

ti ui(ci, pi) = 1i∈S (ti − ci)

We are then interested in designing a market mechanism that satisfies

• Individual Rationality: U(V, B), ui(ci, pi) ≥ 0 for all choices of V, B, ci, pi

• Incentive Compatibility:

U(V, V) = sup
B∈R

U(V, B) ui(ci, pi) = sup
pi∈R

ui(ci, pi)

• Surplus-Maximizing:

S, (ti)i∈S = argmaxS,(ti)i∈S
U(V, B) +

n

∑
i=1

ui(ci, pi)

• Private: The values of S, (ti)i∈S do not depend on the samples Xi themselves.

1As data is freely replicable, one buyer’s demands do not impose any constraints on the ability of the
sellers to satisfy another buyer’s demands. Thus, each buyer can be considered separately.
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2.1 The Naive VCG Approach 2 MODEL

Privacy is an especially important feature to respect. In addition to the security risk the
comes with working with user data directly, if seller data is stored in a decentralized way,
querying user data can be very expensive. Furthermore, the set D in which the user data
lies may not be well-structured. Finally, if the market queries seller i’s data to select a
sample S, but does not actually include Xi in the sample S, seller i may arguably incur a
privacy cost without receiving compensation.

2.1 The Naive VCG Approach

As stated, noting that the above model is a depiction of a reverse auction, it is quite
straightforward to see that the VCG mechanism satisfies all of these properties. That
is, by expanding

argmaxS,(ti)i∈S
U(V, B) +

n

∑
i=1

ui(ci, pi) = argmaxS,(ti)i∈S
V − ∑

i∈S
ti +

n

∑
i=1

1i∈S (ti − ci)

= argmaxS,(ti)i∈S
V − ∑

i∈S
ti + ∑

i∈S
ti − ∑

i∈S
ci

= argminS,(ti)i∈S ∑
i∈S

ci

we find that to maximize surplus, it suffices to minimize the aggregate cost over the sellers
selected in the sample. Defining S′ := argminS⊂[n] ∑i∈S pi, and

t′i := min
S⊂[n]\{i}

∑
i∈S

pi − min
S⊂[n]

∑
i∈S

pi

Finally, the market then allocates

S, (ti)i∈S :=

{
S′, (t′i)i∈S if ∑i∈S t′i ≤ B
∅, 0 else

As the sample S and payments ti are determined only by the prices pi and the bid B, the
VCG mechanism satisfies privacy in addition to the other three properties.

2.2 Enforcing Representativeness

Unfortunately, although the VCG mechanism as described above satisfies all four proper-
ties, it is unable to make any guarantee on how representative the sample S that the buyer
obtains is relative to the true law of µ, since the posted prices pi may be correlated with
the underlying sample Xi. As an extreme example, suppose that Xi was exactly equal
to pi. The VCG mechanism then returns the sample {Xi}i∈S =

{
X(i)

}
i∈[s]

, where X(i)

denotes the ith order statistic. This sample can look extremely different from the true dis-
tribution, especially when n ≫ s as in our setting. We modify our model to take this into
account.
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3 DETERMINISTIC MECHANISMS

We now assume that the sellr’s prices pi : Ω → R>0 are drawn i.i.d from some un-
known distribution with cumulative density function F that is absolutely continuous with
respect to the Lebesgue measure. We let ν be a measure over D × R that gives the joint
distribution of the price and data sample. In addition to specifying their bid and the
number of samples s, we further ask the buyer to set an information-theoretic threshold
τ, which denotes a tolerance on the amount of information (in nats) that they are willing
to forego. In order to satisfy the representativeness property, the market must also ensure
that

DKL

(
µ || 1

s ∑
i∈S

µi

)
=
∫
D

log

 dµ

d
(

1
s ∑i∈S µi

)
 dµ ≤ τ

That is, the market must guarantee that by approximating the sampling process for µ
with the sampling process given by procuring s samples, and selecting one uniformly at
random, the buyer loses at most τ nats of information.

Notice that in order to make this guarantee in addition to the privacy guarantee, we
must be able to make claims on the representativeness of a sample without being able to see
the sample itself. In the next two sections, we show how it is indeed possible to make such
guarantees within a certain capacity.

3 Deterministic Mechanisms

In this section, we describe the unique surplus-maximizing mechanism that satisfies in-
dividual rationality, incentive compatibility, privacy, representativeness, and is also de-
terministic in the order of the prices. That is, for each ordering σ of the sellers by price,
the mechanism will query data from the same sample of seller indices S ⊂ [n]. To con-
struct this mechanism, we make a modification of the VCG algorithm described in Sec-
tion 2.1 to constrain the mechanism to only those collections of samples S such that the
Kullback-Leibler divergence is below the given threshold τ. The existence of this mecha-
nism follows from the observation that the KL-divergence of any sample S can be tightly
upper-bounded even without access to the data itself. To see this, we first apply the dis-
integration theorem to find a family of probability measures {µr}r∈R such that for any
measurable event E ⊂ D × R,

ν(E) =
∫

R

∫
D

f (r)µr (E ∩ ({r} ×D)) dr

Here, f := F′ denotes the probability density function of the seller price distribution.
Next, let γ be a measure over D such that µr ≪ γ for all r ∈ R. Observe then that we
have that ν ≪ γ ⊗ λ, where γ ⊗ λ denotes the product measure of γ and the Lebesgue
measure over the space D × R. We may subsequently write, for any (x, r) ∈ D × R,

dν

d (γ ⊗ λ)
(x, r) =

dµr

dγ
(x) f (r)
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3 DETERMINISTIC MECHANISMS

Now, consider the joint law ν(i) of the data and price of the seller with the ith smallest
price. By the usual combinatorial identity, we can compute

dν(i)

d (γ ⊗ λ)
(x, r) =

n!
(i − 1)!(n − i)!

F(r)i−1 (1 − F(r))n−i dν

d (γ ⊗ λ)
(x, r)

=
n!

(i − 1)!(n − i)!
F(r)i−1 (1 − F(r))n−i dµr

dγ
(x) f (r)

As the mechanism is deterministic in the ordering of the prices, the set of orderings

O(S) :=
{∣∣{j ∈ [n] | pj ≤ pi

}∣∣}
i∈S

is fixed, no matter the values of the prices posted by the sellers. Thus, we may write

DKL

(
µ || 1

s ∑
i∈S

µi

)
≤ DKL

ν || 1
s ∑

i∈O(S)
ν(i)


=
∫
D×R

log

 dν

d
(

1
s ∑i∈O(S) ν(i)

)
 dν

= −
∫
D×R

log

d
(

1
s ∑i∈O(S) ν(i)

)
dν

 dν

= −
∫
D×R

log

1
s ∑

i∈O(S)

dν(i)

dν

 dν

= −
∫
D×R

log

1
s ∑

i∈O(S)

dν(i)
dλ⊗γ

dν
dλ⊗γ

 dν

= −
∫
D×R

log

1
s ∑

i∈O(S)

n!
(i − 1)!(n − i)!

F(r)i−1 (1 − F(r))n−i

 dν

= −
∫

R

∫
D

log

1
s ∑

i∈O(S)

n!
(i − 1)!(n − i)!

F(r)i−1 (1 − F(r))n−i

 f (r)
dµr

dγ
(x)drγ(dx)

= −
∫

R
log

1
s ∑

i∈O(S)

n!
(i − 1)!(n − i)!

F(r)i−1 (1 − F(r))n−i

 f (r)dr

= −
∫ 1

0
log

1
s ∑

i∈O(S)

n!
(i − 1)!(n − i)!

ui−1 (1 − u)n−i

 du

where in the final step, we use the substitution u = F(r). Observe that this final integral
can be computed without knowledge of the distributions ν, µ, or the CDF F. Thus, we
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4 RANDOM MECHANISMS

may consider a mechanism that first builds the set

A :=

S ⊂ [n] | |S| = s, −
∫ 1

0
log

1
s ∑

i∈O(S)

n!
(i − 1)!(n − i)!

ui−1 (1 − u)n−i

 du ≤ τ


and subsequently runs the Naive VCG approach described in Section 2.1, but instead
computes argminS|O(S)∈A ∑i∈S pi, and makes a similar modification to the Clark pivot
rule. The uniqueness of this mechanism follows in part from the uniqueness of the VCG
mechanism as a surplus-maximizing mechanism satisfying individual rationality and in-
centive compatibility. The mechanism described above does not always maximize sur-
plus. However, it does maximize surplus when the inequality DKL

(
µ || 1

s ∑i∈S µi

)
≤

DKL

(
ν || 1

s ∑i∈O(S) ν(i)

)
is tight, which occurs e.g. when the data sample is equal to the

seller price. As the mechanism must satisfy privacy, it can do no better than constraining
to the class A of orderings.

4 Random Mechanisms

Unfortunately, even the optimal deterministic mechanism as described above fails to pro-
vide great guarantees. Notice, for instance, that the minimum KL-divergence of any order
statistic is at least the KL divergence of the n

2 th order statistic. This is given by

DKL

(
ν || ν( n

2 )

)
= −

∫ 1

0
log
(

n!
(n/2 − 1)!(n/2)!

un/2−1 (1 − u)n/2
)

du

= −(n/2 − 1)
∫ 1

0
log(u)du − (n/2)

∫ 1

0
log(1 − u)du − log

(
n!

(n/2 − 1)!(n/2)!

)
= n − 1 − log

(
n

n/2

)
+ log (n/2) → ∞

Thus, in the regime n ≫ s, the deterministic mechanism will be unable to make any guar-
antees for most reasonable values of τ. In this section, we construct a random mechanism
capable of satisfying any request for τ, and also satisfies individual rationality, incentive
compatibility, and privacy.

The mechanism is described as follows. First, we compile a sorted list of all subsets
S ⊂ [n] of size s by the aggregate price ∑i∈S pi. Next, we select a subset S of s samples
uniformly at random. Then, we locate S on our sorted list, shift it back k places, and set S′

to be the result. If at any step, S is already the cheapest sample, then we do not continue
shifting. For each i ∈ S, we set t′i = pj where j is the index of the seller whose price pj is
the next largest after pi. Finally, we return the sample if the aggregate price is at most B,
and do not make any allocation otherwise.

It is easy to see that this mechanism satisfies individual rationality, incentive compat-
ibility, and privacy. We now show that it satisfies representativeness when k = O

(
τ
sn
)
.

Observe that each sample-price pair within the random returned collection of samples S′
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4 RANDOM MECHANISMS

has a mixture distribution

νS′ =
k + 1
(n

s)

s

∑
i=1

1
s

ν(i) +

(
1 − k + 1

(n
s)

)
∑

S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}

1
(n

s)− k − 1 ∑
i∈S

1
s

ν(i)

Here, S(i) denotes the ith cheapest subset. The first sum term arises if the subset we chose
uniformly at random happened to be among the k + 1 cheapest subsets. In this case, after
shifting k places, we arrive at the cheapest subset. If this case does not occur, then our
subset is chosen uniformly at random from the second cheapest to the n − kth cheapest
subset. As the KL-divergence is convex, we may bound it by

DKL (ν || νS′) ≤ k + 1
(n

s)

s

∑
i=1

1
s

DKL

(
ν || ν(i)

)

+

(
1 − k + 1

(n
s)

)
DKL

ν || ∑
S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}

1
(n

s)− k − 1 ∑
i∈S

1
s

ν(i)


≤ k + 1

(n
s)

DKL

(
ν || ν(1)

)
+

(
1 − k + 1

(n
s)

)
DKL

ν || ∑
S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}

1
(n

s)− k − 1 ∑
i∈S

1
s

ν(i)


≤ (k + 1)n

(n
s)

−
(

1 − k + 1
(n

s)

) ∫
D×R

log

 ∑
S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}

1
(n

s)− k − 1 ∑
i∈S

1
s

dν(i)

dν

 dν

≤ (k + 1)n
(n

s)
−
(

1 − k + 1
(n

s)

)
log
(

(n
s)

(n
s)− k − 1

)

−
(

1 − k + 1
(n

s)

) ∫
D×R

log

 ∑
S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}

1
(n

s)
∑
i∈S

1
s

dν(i)

dν

 dν

≤ (k + 1)n
(n

s)
−
(

1 − k + 1
(n

s)

)
log
(

(n
s)

(n
s)− k − 1

)

+

(
1 − k + 1

(n
s)

) ∫
D×R

1 − ∑S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}
1
(n

s)
∑i∈S

1
s

dν(i)
dν

∑S⊂[n]|S ̸∈{S(1),S(n),...,S(n−k+1)}
1
(n

s)
∑i∈S

1
s

dν(i)
dν

dν

=
(k + 1)n

(n
s)

−
(

1 − k + 1
(n

s)

)
log
(

(n
s)

(n
s)− k − 1

)

+

(
1 − k + 1

(n
s)

)∫
D×R

1

1 − ∑S∈{S(1),S(n),...,S(n−k+1)}
1
(n

s)
∑i∈S

1
s

dν(i)
dν

dν − 1
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≤ (k + 1)n
(n

s)
+

(
1 − k + 1

(n
s)

) 1

1 − n(k+1)
(n

s)

− 1 − log
(

(n
s)

(n
s)− k − 1

)
≤ (k + 1)n

(n
s)

+

(
1 − k + 1

(n
s)

) 1

1 − n(k+1)
(n

s)

− 1 − (k + 1)
(n

s)



whence it follows that if we choose k = Θ
(

τ
n
)
(n

s), the mechanism satisfies representa-
tiveness. On average, the buyer will have to pay for a subset priced at the 1

2

(
1 − Θ

(
τ
n
))2

quantile. While it is unclear how close this mechanism is to optimal, the mechanism is
able to find an allocation for any τ.

5 Conclusions

We designed two mechanisms that seek to satisfy five desirable properties: individual ra-
tionality, incentive compatibility, surplus efficiency, privacy, and representativeness. Cru-
cially, the challenge in designing such mechanism lies in trying to meet both the represen-
tativeness, privacy, and surplus efficiency constraints concurrently. We first showed that
there exists a unique (up to a pivot rule) deterministic mechanism, and further showed
that this mechanism is unable to clear most representativeness constraints. We then
showed how randomness can be utilized to clear any representativeness constraint, while
still guaranteeing that on average, buyers pay at most at the 1

2

(
1 − Θ

(
τ
n
))2 quantile. A

key future research direction is to understand what the optimal tradeoff between repre-
sentativeness and surplus is, when constrained to a private mechanism. One may also
consider mechanisms that aren’t private, but aim to minimize the number of queries for
additional data.
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