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Abstract

We demonstrate the ability of a random forest model to learn Newton’s inverse-
square law, particularly within the context of orbital mechanics, via the use of
multiple techniques from model explainability literature. We train a random forest
to predict the first finite difference of a planet’s velocity based on the planet’s
prior position relative to Earth and its distance to the Sun. Shapley values of these
features demonstrate the relative significance of the planet’s distance to the Sun and
exhibit a linear relationship with the inverse square of said difference, validating the
recovering the inverse-square law up to a constant of proportionality. t-distributed
stochastic neighbor embedding (TSNE) reveals the topological structure of the fea-
ture space for each planet examined, yielding the expected 1-dimensional manifold
in all cases except for one. All code to reproduce experiments can be found at
https://github.com/ndurvasula/TeamOskarProjectS.

1 Introduction

Over several millennia, various civilizations have developed their own mythologies as they relate
to heavenly bodies such as the sun, the moon, or potentially other planets. The ancient Greeks
acknowledged Zeus as the god of the sky and attribute each astronomical body to a different, less
powerful figure (they understood the movement of the Sun as a result of the god Helios riding his
chariot from the east to the west, for example). The Shinto Japanese attribute the (first) event of a
solar eclipse to a conflict between the sun goddess Amaterasu and her brother Susanoo. The Norse
foresee the devouring of the sun and moon by the Fenris wolf at Ragnarok, signifying an elevated
conception of significance of these two bodies. The Chinese identify each year with one of the twelve
members of the zodiac. In all cases, however, the goal of an astronomical mythos is to explain the
behavior of astronomical bodies, be it the sun, the moon, the stars, or the planets.

Today, we understand the movement of astronomical objects in terms of Kepler’s Laws. Kepler’s
first law states that the orbit of a planet is given by an ellipse, with the Sun at one of the two foci.
Formally, we have that the distance r from any planet to the Sun takes the form

‖r‖ =
p

1 + ε cos θ

where r is the vector from the planet to the sun, p denotes the semi-latus rectum, ε denotes the
eccentricity of the ellipse, and θ denotes the angle from the planet to the Sun relative to the other
focus. We illustrate these below in Figure 1.
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Figure 1: A diagram of the elliptical orbit (as per Kepler’s first law) of a planet about the sun. We label θ and
the vector r and show three regions of equal area swept out in equal times as per Kepler’s second law. The
vertical line segment through the sun is the semi latus rectum.

Kepler’s second law states that angular momentum is conserved, or geometrically, that the line
segment connecting the sun and an orbiting planet traces out equal areas in equal times (see Figure 1).
For simplicity, we write

r(θ) =
A

B + cos θ

where r is the distance from an orbiting planet to the sun (this is equivalent to the above form under
proper substitutions of constants). Then we have

Aṙ =
A2 sin θ

(B + cos θ)2
θ̇ =

A2

(B + cos θ)2
· θ̇ sin θ = (r2θ̇) sin θ = C sin θ

Note that the area swept our by a planet’s radius vector in a very short time period is well approximated
by an isosceles triangle with legs of length r(θ) and included angle dθ = θ̇ dt. It follows that r2θ̇ is
constant, which validates the last equality. Now we have

1 = sin2 θ + cos2 θ =
A2

C2
ṙ2 + (B −A/r)2 =

A2

C2
ṙ2 +B2 − 2A

r
+
A2

r2

Differentiating with respect to t gives

0 =
2A2

C2
ṙr̈ +

2A

r2
ṙ − 2A2

r3
ṙ

Dividing by ṙ and rearranging gives

r̈ =
C2

r3
− C2

Ar2

Note also that

d2

dt2
r cos θ =

d

dt
ṙ cos θ − rθ̇ sin θ =

d

dt
ṙ cos θ − C

r
sin θ = r̈ cos θ − C2

r3
cos θ = −C

2 cos θ

Ar2

d2

dt2
r sin θ =

d

dt
ṙ sin θ + rθ̇ cos θ =

d

dt
ṙ sin θ +

C

r
cos θ = r̈ sin θ − C2

r3
sin θ = −C

2 sin θ

Ar2

and hence the magnitude of the acceleration of a planet is proportional to√(
d2

dt2
r cos θ

)2

+

(
d2

dt2
r sin θ

)
=

C2

Ar2
∝ 1

r2

which is Newton’s famous inverse-square law for the gravitational force.

Using tools from the model explainability literature, we aim to demonstrate that modern machine
learning techniques have the capacity to learn these laws from observational data. We first give a
brief overview of the techniques we will use.
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1.1 Random Forests

Random forests consist of an ensemble of decision trees, where the features that each tree uses for
prediction are generated by taking a random subset of the original features (this is generally referred
to as feature bagging [Bre01]). As is typical of many ensemble learning algorithms, we average
the predictions produced by the individual decision trees. This is why feature bagging is useful: it
reduces correlation between the individual decision trees that we train, and hence the aggregation
of these trees reduces the variance of our model. In particular, if we let f̂T1

, f̂T2
, . . . , f̂Tn

be the
prediction functions learned by each of the individual decision trees, then defining

f̂agg =
1

n

n∑
i=1

f̂Ti

allows us to say

Var[f̂agg] =
1

n2

n∑
i=1

Var[f̂Ti
]

which, assuming a roughly constant variance across the decision trees, yields a variance that decreases
as n−1. At the same time, the bias of the aggregate model is nothing but the average bias of each of
the individual trees, and assuming again that these are roughly the same, we see that this aggregation
approach does not affect bias.

Random forests have enjoyed success in a wide variety of applications, including ecology, genetics,
and agriculture [CEJB+07, SBB+18, LLLW14]. Although random forests are highly versatile, they
are not traditionally viewed as interpretable in the same way that standard tools based on linear models
are as there is no equivalent of a “weight vector” that succinctly reports the relative importance
of different features. This lack of explainability is a common feature to many modern function
approximators, and is perhaps the central issue that we aim to address (in the particular context of
astronomy) in this project.

1.2 Shapley Values

A modern technique known as Shapley Value Analysis [LL17b] provides a unified method for model
explainability. The method has its roots in a subfield of mathematical economics known as mechanism
design. In a seminal paper, Lloyd Shapley introduced a concept which is referred to today as a
“Shapley Value” [Sha53]. This value is given by the average marginal contribution of a given player
in an n-person game over all coalitions of players. In [LL17b], the task of prediction is thought of
as an d-person game played amongst the d features. The SHAP value then computes the average
marginal contribution of a feature in the prediction over all coalitions of features. We make this
construction more explicit. Suppose we have learned a model f : Rd → R, and we wish to explain
its predictions on a dataset X ⊂ Rd. A locally accurate additive feature attribution method is a
collection of functions φi : Rd → R for i ∈ [d] such that for all x ∈ X

f(x) = φ0 +

d∑
i=1

φi(x)I [xi is known]

The idea behind this model is to represent each prediction f(x) as a linear combination of Boolean
variables indicating whether or not the ith feature is known. The value of φi(x) is then easily
interpretable as the impact of the ith feature on the model estimate f(x). SHAP values, as proposed
in [LL17b], define

φi(x) =
∑

S⊂[d]\{i}

|S|!(d− |S|!− 1)

d!

∣∣E [f(x) | πS∪{i}
]
− E [f(x) | πS(x)]

∣∣ (1)

where πS : Rd → R|S| denotes the natural projection onto the indices given by x. Equation 1
corresponds to the usual Shapley value formula introduced in the economics literature in [Sha53].
Using game-theoretic arguments, Lundberg et al. showed that SHAP values are the only consistent
locally accurate additive feature attribution method. That is, it is the unique solution for the φi such
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that if f were to place a larger importance on feature i at some point x, φi(x) will never decrease. In
fact, SHAP values are easily intepretable as conditional expectations. One may write

φ0 +

k∑
i=1

φi(x) = E [f(x) | x1, . . . , xk]

In general, computing SHAP values is time consuming. As there are 2d possible coalitions of features,
computing the SHAP value of a given set of features takes exponential time. However, for the special
case of tree ensembles, SHAP values can be computed in quadratic time using a recursive algorithm
[LL17a]. As random forests belong to this class of predictors, SHAP values offer a locally accurate,
consistent, and easily interpretable method for analyzing feature importance.

2 Method

We aim to show that a random forest model, given only observational data specifying a planet’s
position over time, can learn the inverse square law ‖r̈‖ ∝ 1

r2 described in Section 1. We generate
data using the Python module astropy, which allows users to interface with the JPL Horizons
On-Line Ephemeris System to get observations of planetary bodies over a specified interval of time
[ART+13, APS+18]. We generate 50000 samples for the positions and velocities of the planets
Mercury, Venus, Mars, Jupiter, and Saturn, which we denote by pMercury, pVenus, pMars, pJupiter,
and pSaturn respectively. For each planet, we sampled over a period of time at least twice the length
of its period. Table 1 gives the length of the observation period for each planet.

Mercury Venus Mars Jupiter Saturn
500 1000 1000 11000 22000

Table 1: Number of days that samples were gathered for each planet. Although the length of time for which we
gather samples varies across planets, a total of 50000 samples were gathered for each planet.

We additionally generate pSun for each respective time period. These positions are generated as
Cartesian coordinates in the basis given by the International Celestial Reference System. The origin
of this coordinate system is the barycenter of the Solar System, which is relatively close to the Sun.
For any Planet ∈ {Mercury, Venus, Mars, Jupiter, Saturn}, we can compute the vector rPlanet
(and similarly ṙPlanet) as described in 1 as

rPlanet(t) = pSun(t)− pPlanet(t)

Using this data, we compute an approximate second difference

yPlanet(t) := ‖ṙPlanet(t+ ∆t)− ṙPlanet(t)‖ ∝∼ ‖r̈Planet‖

where ∆t denotes the number of days per sample, which may be computed using the information in
Table 1. We give the random forest the following information as input

xPlanet(t) = (αPlanet(t), δPlanet(t), ‖pEarth(t)− pPlanet(t)‖ , ‖rPlanet(t)‖)

where αPlanet(t) denotes the right ascension of the planet, δPlanet(t) denotes the declination of
the planet, and ‖pEarth(t)− pPlanet(t)‖ denotes the distance from the planet to Earth. The right
ascension and declination may be computed from the given Cartesian coordinates directly by using a
spherical coordinate transformation. We did not include planets beyond Saturn in our analysis, as
finite differences from the Ephemeris system become too inaccurate. Indeed, the finite difference
data for Saturn is already inaccurate enough to produce substantial repercussions in our analysis, as
we will see in Section 3. Observe that in this setup, we should have that

yPlanet(t) =
C

‖rPlanet(t)‖2

by the inverse square law for some scaling constant C, and the other three features may only serve
to contaminate prediction. We choose this setup as this information is similar to what early as-
tronomers might have had access to. For each planet, we train a random forest fPlanet on the dataset
(xPlanet, yPlanet) using the scikit-learn framework [PVG+11]. We first perform 3-fold random-
ized hyperparameter selection to tune the parameters n_estimators, max_features, max_depth,
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min_samples_split, and bootstrap for 100 iterations. We then train the random forest using the
optimized hyperparameters and verify that it performs well both quantitatively and qualitatively by
computing the Bias and Variance of the estimator, along with a Gaussian Kernel Density Estimate
of the residuals. We then compute the Shapley values of f to get the functions (φα, φδ, φE , φS)
corresponding to the features of x using the Python package shap [LEC+20]. If the random forest
learned yPlanet correctly, we should have that

φS(‖rPlanet‖) + φ0 ≈ yPlanet ∝∼
1

‖rPlanet‖2

and φα, φδ, φE ≈ 0. We verify the former by showing that 1
‖rPlanet‖2

and φS(‖rPlanet‖) are affinely
related. The latter may be verified by comparing the empirical distributions of (φα, φδ, φE , φS) over
a random choice of x. We further analyze the contamination of the three extraneous features on the
Shapley values by computing a 2-dimensional t-distributed Stochastic Neighbor Embedding (TSNE)
of the point cloud

M := {(φα(x(t)), φδ(x(t)), φE(x(t)), φS(x(t)))}
first introduced in [MH08]. In theory, TSNE(M) ⊂ R2 should appear as a 1-dimensional manifold,
as all coordinates, except that corresponding to φS , should be zero. However, if the random forest
splits on the other features, we may instead see clusters of points corresponding to groups of x(t)
that are treated similarly by the random forest.

3 Results

We first analyze how well our random forests fit yPlanet in terms of bias and variance. Table 2
demonstrates that the random forest predicts the targets yPlanet between 5 to 8 orders of magnitude
better than the mean E [yPlanet] with negligible bias. We can also see from Table 2, by applying the
bias-variance decomposition, that the amount of irreducible error is very small.

Planet E [yPlanet − fPlanet] Var [yPlanet − fPlanet] E
[
(yPlanet − fPlanet)2

]
Var [yPlanet]

Mercury 1.20027e-03 8.76903e-04 8.78344e-04 2.96998e+04
Venus -2.98130e-04 5.82933e-05 5.83822e-05 2.79233e+02
Mars -5.46507e-05 9.26582e-05 9.26611e-05 2.50072e+03

Jupiter 8.16967e-05 1.67735e-04 1.67741e-04 5.78114e+02
Saturn 2.92417e-04 1.21947e-03 1.21955e-03 3.12429e+02

Table 2: The bias, variance, and mean squared error of the random forests, along with the variance of the yPlanet.

To see the overall shape of the empirical distribution of error, we make a Gaussian Kernel Density
estimate for each set of residuals. Figure 2 demonstrates the sharp concentration of the residuals at 0
for all of the planets, demonstrating that the random forests indeed fit the targets well. Among all of
the planets, the variance of the residuals for Mercury and Saturn are about an order of magnitude
more than those for the other planets, indicating that the targets yMercury and ySaturn were harder to
learn. We see that this trend continues in our subsequent analysis.

Figure 2: A Kernel Density Estimate of the Residual errors yPlanet − fPlanet.

We now apply Shapley Value Analysis to determine if the random forest correctly discarded the
extraneous features and learned the inverse square relationship between ‖r̈Planet‖ and ‖rPlanet‖. We
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first verify that the extraneous features did not contaminate prediction. Figure 8 shows the SHAP
summary plots for each of the planets. We can that for the planets Mercury, Venus, Mars, and
Jupiter, the feature ‖rPlanet‖ was by far the most important, and the empirical distributions of
φα, φδ, and φE are sharply concentrated about 0 as desired. For Saturn, however, we can see that
φα is instead the most important feature, and and the empirical distributions of φδ and φE are less
concentrated at 0, indicating that there was significant contamination from the extraneous features.

Figure 3: Mercury Figure 4: Venus Figure 5: Mars

Figure 6: Jupiter Figure 7: Saturn

Figure 8: SHAP Summary Plots for each of the planets.

The TSNE plots given in Figure 14 show the effect of contamination on the SHAP values. As stated
in Section 1.2, without any contamination, these plots should trace a 1-dimensional manifold, as
only one coordinate is nonzero. For the plots corresponding to Venus, Mars, and Jupiter, we can
see this occurs exactly. The plot corresponding to Mercury is almost a contiguous 1-dimensional
manifold, but we can see that the random forest fMercury deals with the case of large values of yMercury
separately. The plot for Saturn clearly shows two distinct 1-dimensional manifolds, and we can
further see from Figure 13 that one of the “branches” corresponds to values of ySaturn that are less
than zero, and the other corresponds to values of ySaturn that are greater than zero.

Figure 9: Mercury Figure 10: Venus Figure 11: Mars Figure 12: Jupiter Figure 13: Saturn

Figure 14: TSNE Visualization of the SHAP values for each of the planets.

Finally, we can see that the random forests indeed learned the inverse square law from Figure 20.
The dependence plots given in the top row show that for all planets except for Saturn, the function
φS is continuous with respect to ‖rPlanet‖. In the middle row, we plot φS against the inverse square

1
‖rPlanet‖2

, and we can see that these plots are exactly linear with the exception of Saturn, which
appears to be piecewise linear. In the bottom row, we visualize the true inverse square relationship
present in the data by plotting yPlanet against 1

‖rPlanet‖2
. This bottom row yields an explanation for

why the random forest for Saturn had additional contamination: whereas the plots for the other
planets are clean lines, the plot for Saturn has visible error from the inverse square relationship due
to the limitations of the JPL Ephemeris system. This error is not pure noise, however, and has a
period. The additional contamination can then be justified with this periodic noise correlating with
the extraneous features that we added. Indeed, such correlation makes sense as the error is given
by measurement error from Earth. Since these extra features pertain to Earth’s position, it makes
sense that these features correlate with the error, causing the random forests to split on the extraneous
features.

6



Figure 15: Mercury Figure 16: Venus Figure 17: Mars Figure 18: Jupiter Figure 19: Saturn

Figure 20: The top row consists of the SHAP dependence plots for each of the planets. The middle row is
φS(‖rPlanet‖) plotted against 1

‖rPlanet‖2
. The last row is yPlanet plotted against 1

‖rPlanet‖2
.

4 Conclusion

Using tools from the explainability literature, we demonstrated that random forests, given data similar
to that available to early physicists, are capable of identifying the feature that is causing a physical
phenomenon, and describing the relationship between that feature and the observed phenomenon.
Table 2 and Figure 2 show that random forests are well-suited for predicting the given targets. Figure
20 provides compelling evidence that given sufficiently accurate measurements, a random forest is
able to implicitly infer the inverse square law as described in Section 1. Figures 8 and 14 demonstrate
the ability of the random forest to prevent extraneous features, even those that have reason to be
periodically correlated with the target, from contaminating the SHAP values of the causal feature.
Finally, Figures 7, 13, and 19 show that random forests are capable of picking up hidden signals in
the data that explain deviations in the observed trajectory of planets that are far away. With more
precise data, we can extend our analysis to other celestial bodies, such as asteroids and planets far
away from the sun.

We believe that this evidence demonstrates that the type of analysis that we carried out may be
used to better understand more complicated causal relationships. A random forest can be trained on
observational data, and the explanations φi given by Shapley Value analysis decompose a potentially
complex signal into a linear combination of simple single-variate functions that may illuminate a
certain causal relationship. In this way, a researcher may use this method to “test” the hypothesis that
a given quantity has a succinct theoretical description in terms of some specified variables. A future
line of research in this direction would be to apply this method to other problems in experimental
physics to experimentally determine if certain quantities lacking a known analytical description may
be approximately modeled by an analytical description generated by the Shapley Values of a random
forest.
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