
Math 249 Notes

Haydn Gwyn, Naveen Durvasula

Spring 2020

1 Organizing numbers

Miscellaneous notation:

• (n)k: the kth falling factorial

•
(
n
k

)
: n choose k. We define this for negative cases by letting

(
n
k

)
= (n)k

k! .

•
〈
n
k

〉
: # of k-multisets from [n].

• S(n, k): # of partitions of a set [n] into k blocks

• p(n, k): # partitions of n into k positive parts. The parts (λ1 ≥ · · · ≥ λk > 0) are written as a weakly
decreasing sequence with |λ| =

∑
i λi = n.

Definition 1.1 (The Twelvefold Way)
We begin by thinking about how to count maps [k] 7→ [n].

D → D I → D D → I I → I

Any map nk
〈
n
k

〉 ∑
m≤n S(k,m) p≤m(k) :=

∑
m≤n p(k,m)

Injection (n)k

(
n
k

)
1 if k ≤ n else 0 1 if k ≤ n else 0

Surjection k!S(k, n)

〈
n

n− k

〉
S(k, n) p(k, n)

Definition 1.2 (Ferrers/Young diagrams)
The Ferrers diagram of a partition is a left- and bottom-justified arrangment of squares in which the
number of squares in each row represents the parts of the partition.

The Ferrers diagram for the partition (3, 3, 2, 1) and its transpose (4, 3, 2)

1

2 Ordinary generating functions

Suppose we wanted to count k element subsets A of an n element set. This is given by
(
n
k

)
. We introduce a

new method of counting the same quantity. We do this by weighting A by the quantity x|A|. The contribution
for any individual element is given by (1 + x). as if the element is not in the set, 1 is contributed, else x is
contributed. Thus, we consider the polynomial (1 + x)n. This is known as the ordinary generating function
of the function x 7→

(
n
x

)
.

Example 2.1 (Multisets)
We have n fixed elements and we want to pick a multiset A. Again, we want to weight the set by
x|A|. As we have a multiset, we can choose how many times to include each element, encapsulating the
number k of times that xi is included with xki . Since k can take on any non-negative integer value, we
have the generating function

n∏
i=1

(1 + xi + x2i + · · ·) =

n∏
i=1

1

1− xi
=

1

(1− x1)(1− x2) · · · (1− xn)

where each term in the expansion corresponds to precisely one multiset. Collapsing the xi to a single
variable x, we find that the coefficients of the expansion of

1

(1− x)n
= (1− x)−n =

∑
k

(
−n
k

)
(−x)k =

∑
k

(−1)k
(−n)k
k

xk =
∑
k

n(n+ 1)(n+ 2) · · · (n+ k − 1)

k!
xk

represent the number of k-multisets with elements coming from [n]. We thus have that the number of
k-multisets with elements coming from [n] is〈

n
k

〉
=

(
n+ k − 1

k

)

The existence of the nice formula found in Example 2.1 suggests that the problem may yield to a combinatorial
approach. Indeed, we can identify a k-multiset from [n] with weak compositions of the number k. That is,
ordered n-tuples (a1, a2, · · · , an) satisfying

a1 + a2 + · · ·+ an = k

where ai ≥ 0. The partial sums of this sequence are between 0 and k inclusive, but they may not be distinct.
If, however, we replace ai with ai + 1 for each i, the partial sums will be distinct and range from 1 to n+ k
inclusive. There are clearly

(
n+k−1
n−1

)
=
(
n+k−1

k

)
ways to choose these partial sums, which is the value we’re

looking for.

As it turns out, the kth rising factorial comes about when counting the number of distributions from a
k element set into an n element set. These distributions are much like placing books onto a bookshelf, where
we have k elements that we place into n indistinguishable shelves that maintain an ordering. Initially, there
are n different shelves we can place the books into. However, once we place the first book, there are two
spots that we may place the books as we have divided one shelf in two. Thus, the number of ways to place
k books into the n shelves is (n)k. If we make each of the k elements indistinguishable, we must divide by

k! which again gives us the multiset formula (n)k

k! .

2.1 Formal power series

We don’t want to have to worry about things like radii of convergence when dealing with polynomials. Series
like

∑
n!xn have combinatorial value as generating functions. We define a formal power series as simply a

sum
∑
n f(n)xn. Thus, we interpret these polynomials as simply a list of numbers. We may multiply formal

power series as only finitely many terms may generate any given term in the product. We may divide formal

2

power series in some cases. For example, if we have a power series g := 1 + a1x + a2x
2 + · · · that begins

with a 1, we may take its multiplicative inverse as

1

1 + g
= 1 = g + g2 − g3 + · · ·

We’d like for all of our analytical results to hold for formal power series, and indeed they do, but we include
a note on justifying this. The commonplace approach to dealing with this issue is to simply prove all of the
results of single variable calculus with formal power series; this is not so hard, merely time-consuming, and
so we accept the fact that the things we have proven analytically in fact hold formally.

2.2 Partitions and Stirling numbers

We won’t get nice numbers for partitions p(n, k), however, we can get nice numbers for its generating
functions. Thus, we may easily compute p(n, k). We now try to count all possible partitions λ by x|λ|t`(λ)

where `(λ) is its length and |λ| is the sum. When choosing how many parts have 1, we get the geometric
series 1 + xt + · · · yielding the sum 1

1−tx . When choosing how many have 2, we get the geometric series

1 + x2t+ (x2t)2 + · · · yielding the sum 1
1−tx2 . Thus, we end up with the generating function

∞∏
i=1

1

1− txi
=
∑
n,k

p(n, k)xntk

If we instead only care about the number of partitions independent of the length of the partition, we can
change our weighting scheme to forget the length of the partition by collapsing t to 1. This gives the
generating function

∞∏
i=1

1

1− xi
=
∑

p(n)xn = 1 + x+ 2x2 + 3x3 + 5x4 + · · ·

We can be even more flexible, and try to compute the number of odd partitions using the generating function∏
{i|i≡1mod 2}

1

1− xi
=
∑

podd(n)xn = 1 + x+ x2 + 2x3 + · · ·

We can be clever in yet another way, considering the number of partitions of n into distinct parts. The
generating function for pd(n) is given by

∞∏
i=1

(1 + xi) = 1 + x+ x2 + 2x3 + · · ·

As it turns out, these two generating functions are equal. Thus, although not obvious combinatorially, the
number of ways to partition a number into odd parts is equal to the number of ways to partition a number
into distinct parts! We can show this nicely algebraically as

∏
{i|i≡1mod 2}

1

1− xi
=

∏
{i|i≡0mod 2} 1− xi∏

i 1− xi
=

∏
i(1− x2i)∏
i(1− xi)

=
∏
i

(1 + xi)

which is precisely the generating function for the number of distinct partitions. Now we turn our attention
to set of identities due to Rogers and Ramanujan which count the number of partitions with distinct, non
consecutive parts.

3

Theorem 2.2 (Rogers-Ramanujan Identities)
We have ∏

i≡1,4mod 5

1

1− xi
=

∞∑
m=0

xm
2∏m

i=1(1− xi)∏
i≡2,3mod 5

1

1− xi
=

∞∑
m=0

xm
2+m∏m

i=1(1− xi)

Recall that we may depict partitions using a Ferrers diagram:

Let Λn denote the set of partitions on n elements. For any λ ∈ Λn, we define the transpose operation
∗ : Λn 7→ Λn. For any partition λ, we define λ∗ as the partition given by geometrically “transposing” the
Young diagram. Algebraically, this is given by letting the mth part of the transpose be equal to the number
of parts of λ with length less than or equal to m. While algebraically, it is not necessarily intuitive that
taking the transpose twice yields the original object, geometrically this is obvious. We can write down a
generating function for the number of partitions with parts all at most m rather simply:

∑
p≤m(n)xn =

m∏
i=1

1

1− xi

Seeing as the transpose operation bijects partitions with parts of size at most m and partitions with at
most m parts, we can observe immediately that this generating function also encapsulates the number of
partitions with at most m parts. It follows that the generating function for partitions of length precisely m
is

xm
m∏
i=1

1

1− xi

(this follows by incrementing each part of a partition with at most m parts). We are led finally to the identity

∞∏
i=1

1

1− xit
=

∞∑
m=0

tmxm∏m
i=1(1− xi)

On the left hand side, we have clearly the generating function∑
λ

x|λ|t`(λ)

and on the right hand side, we’ve merely partitioned (so to speak) by the length of our partitions. Let’s try
to repeat this process for partitions with distinct parts. Geometrically, we can see that for partitions with
distinct parts, we must have a strictly decreasing “staircase” structure which we call δm, and pasted to its
right is another weakly decreasing partition of at most m parts µ. That is to say, to any λ with distinct parts
with `(λ) = m we can associate a general partition µ with |µ| = |λ| −

(
m+1
2

)
. It follows that the generating

function for partitions of length m with distinct parts can be written in the form

x(m+1
2)

m∏
i=1

1

1− xi

4

Putting this together, we get the partition identity

∏
i≡1mod 2

1

1− xi
=

∞∏
i=1

1 + xi =

∞∑
m=0

x(m+1
2)

m∏
i=1

1

1− xi

We can view this identity as a simpler form of the Rogers-Ramanujan identities - a “zeroth Rogers-Ramanujan
identity.”

A partition with 5 distinct parts and a labelling of µ5.

Returning to the Rogers-Ramanujan identities, we consider what the set of length n partitions with parts
congruent to 1 or 4 mod 5 is. We can see that the m2 term has combinatorial significance as a Young
diagram with m2 blocks is a staircase which skips every other step. Thus, the first identity is given by the
set of distinct and non-consecutive partitions. Similarly, the second identity has can be decomposed into
a staircase with distinct, non-consecutive parts > 1. We’ve now covered binomial coefficients, multichoose
coefficients, and partition numbers (to a certain extent). The remaining set of numbers that appears in the
twelvefold way table is the Stirling numbers of the second kind. We define

S(n, k) := #{partitions of [n] into k disjoint nonempty blocks}

We can quickly establish a recurrence relation on the Stirling numbers by considering the block containing
the number n. If n is in a block on its own, we can eliminate the block to obtain a partition of [n− 1] into
k − 1 parts. Otherwise, n is not in a block on its own, so we simply remove n from its block to yield of
partition of [n− 1] into k parts. That being said, there are k partitions of [n] that yield the same k-partition
of [n− 1] when n is removed (as there are k blocks from which n could have been removed). So we end up
with the recurrence

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1)

Now, note that one can find the total number of set partitions of [n] simply by summing S(n, k) over k. In
particular, we have

Bn =
∑
k

S(n, k)

where we use Bn because these numbers are called the Bell numbers. We show the following generating
function for the Stirling numbers when we fix a given k.

∑
n

S(n, k)xn =
xk∏k

j=1(1− jx)

Rather than generating a recurrence, we aim to show this more combinatorially. Consider the following
coding scheme for a partition: upon adding a new element i, we either append ∗ to the code if we create a
new block, or we append the number j corresponding to the block that we added the new element. Once a
new block is created, we number the block with the element that first instantiated the block. Clearly, the
set of codes and the set of partitions is in bijection. We consider restraints on the set of codes.

5

• The number of ∗ elements is equal to k

• The first element must be a ∗, and each subsequent element may be either a ∗ or a number less than
or equal to the number of ∗s observed thus far.

Thus, a code appears as
∗{1}∗ ∗ {1, 2}∗ ∗ {1, 2, 3}∗ · · ·

This appears as k different Cartesian product terms, one after each ∗. We consider each Cartesian product
term. Each ∗ contributes a weight of x. There is therefore jrxr+1 associated with {1 · · · j}r, yielding x

1−jx

weight for the set {1 · · · j}∗. Putting the Cartesian products together, we get the desired result
∏k
j=1

x
1−jx .

In homage to undergraduate combinatorics, we observe the following:

fk(x) :=
∑
n

S(n, k)xn =
∑
n

kS(n− 1, k)xn + S(n− 1, k − 1)xn = kxfk(x) + xfk−1(x)

and it follows that
fk(x) =

x

1− kx
fk−1(x)

from which the form of the generating function follows inductively.

Now, this ordinary generating function has a certain novelty, but there turns out to be a nicer approach.
Namely, we have ∑

n

S(n, k)
xn

n!
=

(ex − 1)k

k!

What falls quite easily out of this generating function is the generating function for the Bell numbers, which
we obtain by summing the above exponential generating function over all k:∑

n

Bnx
n = ee

x−1

We will develop the machinery for proving that these generating functions are correct later. For now, we
turn our attention to yet another “generating function”:∑

k

S(n, k)(x)k

as it turns out, this generating function for the Stirling numbers is equal to xn. To see this, we rewrite the
left hand side as ∑

k

S(n, k)k!

(
x

k

)
Now we can note that this counts the number of mappings from [n] to [x]. This is because we can choose k
elements to be in the image of our mapping for any k (giving

(
x
k

)
), then we choose an unordered partition

of [n] (giving S(n, k)), and then we order the blocks of our partition. It is clear the xn is the number of
mappings from [n] to [x] as well, which proves the identity. The numbers S(n, k) are referred to as the
Stirling numbers of the 2nd kind. We may also define Stirling numbers of the 1st kind s(n, k) as∑

k

s(n, k)xk := (x)n

There is a matrix interpretation of the relationship of the two kinds of Stirling numbers. The matrix with nk
entries given by S(n, k) is inverse to the matrix with nk entries given by s(n, k). This follows from combining
the two identities above to obtain ∑

k

S(n, k)
∑
j

s(k, j)xj = xn

6

and taking coefficients of xn on both sides gives the dot product of a row of one matrix with a column of
the other. Now what is the significance of these Stirling numbers of the first kind? We can observe rather
obviously that ∑

(−1)ks(n, k)xk = −x(−x− 1) · · · (−x− n+ 1)

and hence ∑
(−1)n−ks(n, k)xk = x(x+ 1) · · · (x+ n− 1)

and it is clear that all coefficients in these series are positive. Hence, we have written down the generating
function for c(n, k) = |s(n, k)| = (−1)n−ks(n, k). We call these number the signless Stirling numbers of the
first kind. We now show that in fact c(n, k) counts the number of permutations in Sn that have k cycles.
We use a similar coding scheme as before. To construct a given permutation, we can add elements in one
by one, either inserting the element into its own cycle or inserting it into an existing cycle. If we insert it
into its own cycle, we have increased the number of cycles, and hence need to increase the exponent on x by
one. Otherwise, we have k choices for where to insert the next element, where k is the number of elements
already inserted. We thus multiply by (x + k) when we insert the k + 1st element, which leads us to the
product ∑

c(n, k)xk = (x+ 1)(x+ 2) · · · (x+ n− 1)

2.2.1 Stirling numbers as an algebraic tool

We can in fact use Stirling numbers as a means to compute certain sums. Consider the sum

N∑
i=0

ik

for some fixed k. We can note by taking finite differences that this will be a degree-(k + 1) polynomial in
N , but it is not so easy to compute this explicitly. This is what we set out to do. We exploit the fact that
(x)k is easier to sum than xk. In particular, we may observe

N∑
i=0

(i)k = k!

N∑
i=0

(
i

k

)
The right summand, by the hockey stick identity (or by seeing the sum as a partition of the (k + 1)-subsets
of [N + 1] by their largest element) is equal to

(
N+1
k+1

)
. Hence, we have

N∑
i=0

(i)k = k!

(
N + 1

k + 1

)
=

(N + 1)k+1

k + 1

Now we have nice expressions for sums of falling factorials, which comprise a basis of the set of polynomials.
We now aim to resolve our original sum:

N∑
i=0

ik =

N∑
i=0

∑
m

S(k,m)(i)m =
∑
m

S(k,m)

N∑
i=0

(x)m =
∑
m

S(k,m)
(N + 1)m+1

m+ 1

3 Combinatorial Species

We look at combinatorial structures we can place on a set of n elements that remain invariant under a
“relabeling” or isomorphism of the set to itself. We give a few examples before giving the general definition

• Partitions of a set A into k blocks (for a specified k) – there are S(n, k) of these, and relabeling the
elements does not change the number of these

• Weighted partitions on a set A, counted by t#blocks – the generating function
∑
S(n, k)tk describes

this

7

• Linear orderings (bijections f : [n]
'−→ A) of a set A – there are n! of these

• Bijections from A to A: there are n! of these

– Despite the fact that there is an obvious bijection between the set of linear orderings of A and the
set of bijections from A to itself, these two sets in fact represent distinct combinatorial species,
as any bijection between the two is necessarily label-dependent.

• Maps from A to [k] (not necessarily bijections). The number of these mappings is kn.

• Trees on the vertex set A. The number of these is nn−2. We could also have rooted spanning trees, of
which there are nn−1.

It turns out that the most natural generating function to associate with these combinatorial objects is the
exponential generating function. This is because we want to eventually divide by n!, as the map from the
total set of objects to the isomorphism classes (by assumption) is n! to 1. Allow us to revisit the examples
from above and offer exponential generating functions for them (a couple of which we have already seen).
Recall that

∞∑
n=0

S(n, k)
xn

n!
= (ex − 1)k/k!

∑
n,k

S(n, k)tk
xn

n!
= e(t(e

x−1)

In fact, the generating function on the right encapsulates all generating functions of the form on the left.
For linear orderings, we have ∑

n!
xn

n!
=
∑

xn =
1

1− x
which is also the generating function for permutations (as expected). Maps A → [k] are given by the
generating function ∑

kn
xn

n!
= ekx = (ex)k

For rooted spanning trees, we have Tn = nn−1, and

T (x) =
∑

Tn
xn

n!

satisfies
T (x) = xeT (x)

from which it follows quite interestingly that T (x) is the inverse of the function xe−x. The coefficients of
the latter function are easy to calculate, and the theory of calculating the coefficients of an inverse series
given the coefficients of a series is well-studied; we will prove the Lagrange inversion formula using trees
(combinatorically, not analytically) later.

We give an example of something that is not a species, but still has a nice exponential generating func-
tion. These are zig-zag permuatations of [n]. As we shall see, the ordering of these numbers affects the
number of these permutations. The zig zag permutations are permutations a such that

a1 < a2 > a3 < a4 · · · {< if n is even else >}an

Let zn be the number of these permutations (these are called Euler numbers). Miraculously, it turns out
that

∞∑
n=0

zn
xn

n!
= sec(x) + tan(x)

This is not a species, as it requires some structure (namely a total ordering) on the label set A. That is, if
the set A were a set of fruits, we could not identity a permutation of them as zig-zag. Alternatively, we can
observe that permuting the labels in a zig-zag permutation may not necessarily yield a zig-zag permutation,
which again is sufficient for these objects not to be combinatorial species. We now define formally what a
combinatorial species is.

8

Definition 3.1 (Combinatorial Species)
For any finite set of labels A, a species associates with it a finite set F (A). The generating function
coefficient fn := |F (A)| for any A with |A| = n. The requirement we have is that any bijective map

A
'−→ B induces a bijective map F (A)

'−→ F (B). We also assert that if g : A → B and h : B → C are
bijections, then h ◦ g is an eqivalent bijection from A to C. We call F , in this spirit, a functor from the
category of finite sets with morphisms as bijections to itself.

We can now define the equivalence of combinatorial species in terms of the isomorphism of functors in the
category of finite sets. Combinatorially, isomorphic species are exactly equivalent. Previously, we discussed
the relationship between sums and products of generating functions and disjoint unions and Cartesian prod-
ucts of sets respectively. We elaborate this more formally using the language of species. We define the sum
of two species F and G

(F +G)(A) = F (A)
∐

G(A)

Note that category theoretically, this corresponds to taking the coproduct. Note that fn + gn = (f + g)n for
“added” species F and G. We define the generating function

(F +G)(x) :=
∑
|(F +G)[n]|x

n

n!
= F (x) +G(x)

Taking the product of species is not as simple, as taking the product term by term of the formal power
series does not correspond to taking the product of the two functions. The purpose of the factorials in the
denominators of the terms of exponential generating functions will become a bit clearer now, as we see that(∑

k

fk
xk

k!

)(∑
k

gk
xk

k!

)
=
∑
k

k∑
j=0

(
k

j

)
fjgk−j

xn

n!

We can now formally define the product species

(F ·G)(A) :=
∐

A=A1
∐
A2

F (A1)× F (A2)

Useful in studying species are the family of indicator species. We define

• 1(x) = 1 – one structure on A = ∅ and no others

• X(x) = x – one structure on A ⇐⇒ |A| = 1

• E(x) = ex – one structure on any A

• (E − 1)(x) = ex − 1 – one structure on A 6= ∅

We can now apply the above to study linear orderings. We can observe (in terms of species):

L = 1 +X · L

and it follows immediately that the generating function for L is 1
1−x , which tells us that there are n! linear

orderings on an n-set. Let us consider another example. Let Fk(A) denote the set of partitions of the set A
into k ordered non-empty blocks (note the distinction from regular partitions, as we have given an ordering
to the blocks). Note that this is equivalent to the set of surjections from A onto [k]. Recalling that E − 1 is
the indicator species with precisely one structure on every nonempty set, we may write

Fk(x) = (ex − 1)k

where Fk(x) is the generating function of Fk(A). If we then remove the requirement that the blocks be
ordered, we find that the generating function for the Stirling numbers of the second kind is∑

n

S(n, k)
xn

n!
=

(ex − 1)k

k!

9

From this, we can find an exact formula for the Stirling numbers of the second kind

S(n, k) =
n!

k!
[xn](ex − 1)k

=
n!

k!
[xn]

k∑
i=0

(
k

i

)
(−1)k−ieix

=
n!

k!

k∑
i=0

(
k

i

)
(−1)k−i

in

n!

=

k∑
i=0

(−1)k−iin

i!(k − i)!

Analogously, we could have recovered the same formula by using the inclusion-exclusion principle. We
consider another example. Let B(A) denote the set of partitions of the set A. We can consider B as a sum
of species

B =

∞∑
k=0

Sk

This yields as the generating function
B(x) = ee

x−1

If we let Bt(A) = B(A), but also counting a partition π with t|π|. We have that the generating function

Bt(x) =
∑
n,k

S(n, k)tk
xn

n!
= et(e

x−1)

We’ve now seen how product species can be used to resolve previously quite annoying problems. What
about species composition? We consider this from the vantage point of generating functions, and we claim
that F ◦ G only “converges” (i.e. has finite coefficients) if F is a polynomial or G has no constant term.
The former restriction is clearly less convenient for us, so we turn our attention to formal power series with
G(0) = 0 (that is, G has no structures on the empty set).

Definition 3.2 (Composite Species)
Formally, let F and G be species, and G(∅) = ∅. We define (F ◦G)(A) to be the species given by first
partitioning A into a set of unordered (nonempty) blocks, and imposing a G structure on each of the
blocks. We then place an F structure on the set of blocks. Clearly, this object commutes functorially
under bijections from the labels to themselves. Thus, we have

(F ◦G)(A) =
∐

π partition of A

F (π)×
∏
B∈π

G(B)

We aim to verify that the generating function

(F ◦G)(x) = F (G(x))

First, let Gk(A) be the structure given by partitioning A into k unordered blocks and placing a G structure
on each. We have

Gk(A) = {π ` A, `(π) = k}

We use the notation π ` A to indicate that π partitions A. Observing that the set of ordered partitions of
A is equivalent to G(A)k, we determine that the exponential generating function for Gk is G(x)k/k!. As
(F ◦G) is simply the disjoint union over these structures, we have that

(F ◦G)(x) =
∑

fk
G(x)k

k!
= F (x) ◦G(x)

10

We can now reinterpret the work we previously did with counting partitions (using product species). In
particular, we see that B(x) = ee

x−1, the generating function for the Bell numbers, is reminiscent of the
generating function for E ◦ (E − 1), and naturally we may consider a partition as a set of nonempty subsets
of A. Another example of a composite partition includes the set of double partitions Q(A), in which we first
partition the set, then partition the partitions. Thus, the set of double partitions is given by the species

Q(A) = E ◦ (E ◦ (E − 1)− 1)

yielding the generating function

Q(x) = ee
ex−1−1

The circular orderings C(A) also form a composite partition. These are given by the equivalence class linear
orderings when the starting element in the ordering is forgotten. Thus, we have that |C[n]| = (n − 1)!. A
permutation on the set A can be decomposed into cycles, or circular orderings. Thus, we have that

P = E ◦ C

so its generating function
P (x) = eC(x)

As we have already found that

P (x) =

∞∑
n=0

n!
xn

n!
=

1

1− x

we can derive that

C(x) = log
1

1− x
=

∞∑
n=1

xn

n
= − log(1− x)

Now rather than simply considering permutations of A, we consider weighted permutations. In particular,
we weight by the number of cycles of a permutation and have

Pt(A) =
∑

w∈P (A)

t#cycles(w) =
∑
k

c(n, k)tk

Where c(n, k) is the number of permutations of A with k cycles for |A| = n. We can see rather simply
(referring to the above) that

Pt(x) = etC(x) = e−t log(1−x) = (1− x)−t

Recalling that

Pt(x) =
∑
n,k

c(n, k)tkxn/n!

we can see using the binomial theorem that

c(n, k) = t(t+ 1) · · · (t+ n− 1)

We can use a similar technique to count derangements more efficiently. In particular, derangements comprise
a species (note that D(σ(A)) = D(A) for a permutation σ). We can note that

D(A) = E ◦ (C −X)

where we have used that any derangement has a cycle decomposition with no one-element cycles. This leads
to

D(x) = e− log(1−x)−x =
e−x

1− x
= e−x(1 + x+ x2 + · · ·)

The coefficient of xn in this series is rather simply seen to be

n!

n∑
k=0

(−1)k

k!
≈ n!

e

11

where the approximation is for n large. As it turns out, this is the same formula one would get by using
inclusion-exclusion. We now try to count permutations by their specific cycle structure. We construct a
mixed generating function that keeps track of the number of cycles of each length. Formally, we count
permutations ω ∈ Sn by the generating function

p#1−cycles
1 p#2−cycles

2 p#3−cycles
3 · · · p#k−cyclesk

For example, when n = 3, we have the ordinary generating function

p31 + 3p1p2 + 2p3

for permutations on 3 letters. We are interested in studying the generating function∑
n,ω∈Sn

pτ(ω)
xn

n!

We can do this quite efficiently by repeating what we did before, but replacing C with Cp where

Cp(p1, · · · ;x) =
∑
k>0

pk
xk

k!

Thus, the generating function of the composition

(E ◦ Cp)(x) = eCp(p;x)

= e
∑
k>0 pk

xk

k

=
∏
k>0

epk
xk

k

=
∏
k>0

∞∑
r=0

prkx
rk

kjr!

With this function being written down, we would like to determine the number of permutations of a given
cycle type λ. This is nothing but the coefficient of pλ

xn

n! in the series above. This is

n!∏
k k

rkrk!

The product in the denominator of this quantity is often notated as zλ, and we will encounter it again
later. Another way to derive this same formula is through a group theoretic argument. If permutations have
the same cycle type, they belong to the same conjugacy class. We may identify cycle types with conjugacy
classes and observe that the number of permutations with a given cycle type is the size of the conjugacy class
corresponding to it. Seeing as the stabilizer of one of these conjugacy classes is nothing but the centralizer
of any of its elements (by definition), we want the centralizer of a permutation in a given conjugacy class
Z(ω) to have zλ elements, where λ := λ(ω). This centralizer can be described by the semi-direct product
of all permutations on the cycle decomposition of the permutation and the cyclic group on each cycle (as
we can move around the elements within a given cycle, or we can swap any pair of cycles - transpositions
generate the symmetric group on the cycles).

We look at another example. Let T (A) denote the species of all rooted trees on a vertex set A. Its
generating function is given by

T (x) = x+ 2
x2

2!
+ 9

x3

3!
+ · · ·

We eventually see that letting T (x) =
∑
tn
xn

n! , we get that tn = nn−1. We may construct a rooted tree
by first defining the root, then partitioning the remaining elements and constructing a rooted tree on each
partition. This gives us the species identity

T = X · (E ◦ T)

12

thus giving the generating function identity T (x) = xeT (x) that we claimed was easy to derive earlier. With
this identity established, we aim to compute an explicit formula for the number of rooted trees on n vertices.
Recall that we may rewrite this as

T (x)e−T (x) = x

Thus, T (x) is the inverse function of xe−x. We could use the Lagrange inversion formula to determine the
coefficients of the expansion of the inverse of xe−x, but we opt instead to offer a combinatorial tree-based
argument for the Lagrange inversion formula. If we are to do this, we must offer a species-based approach
to compute tn.

In terms of intuition, it helps that we already know (think) that tn = nn−1. Consider the species
M(A) = {f : A 7→ A} consisting of all maps from A to itself. Not requiring injectivity and surjectivity, we
have that |M([n])| = nn, which is very close to what we “think” tn is. If we can show that xT ′(x)+1 = M(x),
we can show that indeed tn = nn−1. We can depict any element of M(A) as a directed graph on the elements
of A. For any element of A, we can follow outgoing edges (there is one outgoing edge from each vertex) until
we run into a cycle. Clearly, every vertex leads into a unique cycle, and hence we may partition elements
of A by the cycle to which they lead. Further, considering the elements of A that lead to a given element
r ∈ A that is in a cycle, we find that said elements comprise a tree rooted at r. Hence, any map A→ A can
be represented as a collection of rooted trees whose roots are grouped into cycles. Notably, a group of cycles
is nothing more than a permutation of the roots of the trees (it is the cycle decomposition), and hence we
may write

M = P ◦ T

Thus, we have that M(x) = 1
1−T (x) , as the exponential generating function for permutations is P (x) = 1

1−x .

Let’s try to arrive at what we want to show by first differentiating T . We have that T = xeT . Thus,

T ′ = eT + xT ′eT = eT + TT ′

xT ′ = xeT + xTT ′ = T + xTT ′

x(1− T)T ′ = T

xT ′ =
T

1− T
=

1

1− T
− 1 = M(x)− 1

as desired. We turn our attention now to the number of children of each vertex in a rooted tree.

Theorem 3.3 (Cayley’s Formula)
If T is a tree on A, we define cT (a) to be the number of children of a ∈ A. Then we have

∑
T∈T ([n])

∏
i∈[n]

x
cT (i)
i =

∑
i∈[n]

xi

n−1

Proof. Notice on both sides we have polynomials of degree n− 1. Therefore, when expanded, every term on
either side is missing at least one variable. It is therefore sufficient to show that both sides are equivalent
when an arbitrary xi is omitted. As both sides are symmetric in i, we need only show this for a single case
– we choose xn = 0. If xn = 0 on the right, it is easy to see that we get

(x1 + · · ·+ xn−1)n−1 = (x1 + · · ·+ xn−1)(x1 + · · ·+ xn−1)n−2 = (x1 + · · ·+ xn−1)
∑

T∈T ([n−1])

∏
i∈[n−1]

x
cT (i)
i

where the latter equality follows from inductive hypothesis. For the left hand side, the only nonzero terms
after setting xn = 0 are those that correspond to trees in which n is a leaf. These trees can be counted
simply by considering the parent of n, which could be any node 1, · · · , n− 1. It becomes quite evident then
that ∑

T∈T ([n])

∏
i∈[n]

x
cT (i)
i

∣∣∣
xn=0

= (x1 + · · ·+ xn−1)
∑

T∈T ([n−1])

∏
i∈[n]

x
cT (i)
i

13

We now try to modify Cayley’s formula so that we only keep track of the number of nodes that have k
children. Thus, we write the modified generating function∑

T∈T ([n])

∏
a# vertices with k children
k

Comparing to the original form of Cayley’s formula, we can see that terms of the form xµ1

1 · · ·xµnn contribute
a term aµ1

· · · aµn to this modified generating function. Employing the original form of Cayley’s formula and
the multinomial theorem, we have∑

T∈T ([n])

∏
a# vertices with k children
k =

∑
µ1+···+µn=n−1

(
n− 1

µ1, · · · , µn

)
aµ1
· · · aµn

= (n− 1)!
∑

µ1+···+µn=n−1

aµ1

µ1!
· · · aµn

µn!

= (n− 1)![xn−1]A(x)n

=

[
xn−1

(n− 1)!

]
A(x)n

Where A(x) is the exponential generating function with coefficients given by ak. We call A a generic species
given by placing one structure of weight ak on each set of size k. If we let TA be the species of rooted trees,
weighted by

∏
a# vertices with k children
k . We can write the species identity TA = X · (A ◦ TA). We have that

TA(a;x) =
∑
n

 ∑
T∈T ([n])

∏
a# vertices with k children
k

 xn

n!

Because we are working with a generic species, we are able to prove general statements about relations
between exponential generating functions of various species. In particular, we find that

TA(x) = X · (A ◦ TA)(x) =⇒ TA(X)

A ◦ TA(X)
= x =⇒ x

A(x)
◦ TA(x) = x

Thus, we are computing the functional inverse of x
A(x) . Noting that the coefficients of F ◦G will converge if G

has no constant term, we can consider arbitrary formal power series xB(x) and x/A(x) which are functional
inverses. We have that [

xn

n!

]
xB(x) =

[
xn−1

(n− 1)!

]
A(x)n[

xn+1

(n+ 1)!

]
xB(x) =

[
xn

n!

]
A(x)n+1

(n+ 1)! [xn]B(x) = n! [xn]A(x)n+1

[xn]B(x) =
1

n+ 1
[xn]A(x)n+1

The latter formula is known as the Lagrange Inversion Formula. Let’s check this formula on our previous
example of counting rooted trees. In this case, A(x) = ex and xB(x) = T (x). Applying the Lagrange
inversion formula gives that

[xn]B(x) =
1

n+ 1
[xn]e(n+1)x =

(n+ 1)n−1

n!
=

(n+ 1)n

(n+ 1)!

We have [xn]B(x) = [xn+1]T (x), from which our desired formula follows.

4 Catalan Numbers

14

Definition 4.1 (Catalan Numbers)
The nth Catalan number

Cn := #balanced () strings of order n

:= #Dyck paths of order n

We can see that C3 = 5 as we have the balanced strings

((())) (()()) ()(()) (())() ()()()

Corresponding to this parenthetical representation are Dyck paths which consist of lattice paths from (0, n)
to (n, 0) that do not go above the diagonal. Clearly, these two sets are in bijection as we can construct a
Dyck path from a balanced string by going down every time we see a left parenthesis and right whenever we
see a right parenthesis.

We first see that the Catalan numbers are related to the number of unlabelled ordered rooted forests on
n vertices, or equivalently, the number of unlabelled ordered rooted trees on n + 1 vertices, which consists
of trees that are further endowed with a linear ordering on the children of each vertex. We can associate
balanced strings of parentheses with these trees recursively by letting the minimal balanced substrings (sub-
strings whose substrings are not balanced) represent children of the root.

We can note some nice connections between Catalan numbers and various combinatorial objects by identi-
fying bijections between balanced strings of parentheses and said objects. We claim first that the number
of binary trees on 2n + 1 vertices with n + 1 leaves equals the nth Catalan number. In particular, we may
read each left parenthesis in a string as “create a left child of the current node” and each right parenthesis
as “move up the tree until finding a node without a right child and add a right child.” Starting from just
a root node, this describes a bijection from strings of parentheses to the aforementioned set of binary trees.
Another object counted by the Catalan numbers is triangulations of an n+ 2-gon.

We now aim to write the generating function for the nth Catalan number. We choose to write an ordi-
nary generating function

C(x) =
∑
n

Cnx
n

We can see rather simply that any balanced string of parentheses consists of minimally balanced substrings
which take the form

(〈balanced string of parentheses〉)

The generating function for these is nothing other than xC(x), and because we can have an arbitrary number
of these, we may conclude that

C(x) =
1

1− xC(x)

Alternatively, we can note that any balanced string of parentheses has a first minimally balanced substring
as described above and then has a “remainder” which is another general balanced string of parentheses. This
yields

C(x) = 1 + x(C(x))2

where the 1 comes from the empty string (which is especially necessary because the remainder could be
empty). This latter equation is quite clearly equivalent to the former, and either way, we can derive

C(x) =
1−
√

1− 4x

2x

There is also a species way to define this, and this method gives motivation for why we use an ordinary
generating function for the Catalan numbers. Let TL(A) denote the species of ordered labelled rooted trees

15

on A. Interestingly, due to the fact that we have ordered the trees, each specific tree has trivial automor-
phism group. Thus, there are n! labelled rooted trees for each unlabelled rooted tree. Thus, since TL(A)
will have a nice exponential generating function, C will have a nice ordinary generating function. Since we
can construct the set of ordered labeled trees inductively by first choosing a root, then imposing a linear
ordering on the children, and subsequently constructing an ordered labelled rooted tree on each child, we
get the species identity TL = X · (L ◦ TL).

We can observe now how an explicit formula for the Catalan numbers falls out of this ordinary generating
function by using the binomial theorem. We have

(1− 4x)1/2 =
∑
n

(
1/2

n

)
(−4)nxn

=
∑
n

1
2 ·
−1
2 ·

−3
2 · · ·

−(2n−3)
2

n!
(−4)nxn

= −
∑
n

2n
1 · 3 · 5 · · · · (2n− 3)

n!
xn

= −
∑
n

2n
(2n− 2)!

2n−1(n− 1)!n!
xn

= −
∑
n

(2n− 2)!

2n!(n− 1)!
xn

= −
∑
n

2

(
2n−2
n−1

)
n

xn

This leads to the explicit formula

Cn =

(
2n
n

)
n+ 1

We can use this formula to compute a few Catalan numbers:

n Cn
0 1
1 1
2 2
3 5
4 14
5 42

A more elegant way to arrive at this formula comes from applying the Lagrange Inversion formula. Re-
call that if xB(x) and x/A(x) are inverse functions, then

[xn]B(x) =
1

n+ 1
[xn]A(x)n+1

We can derive from earlier equations that

xC(x)− x2C(x)2 = x

from which we conclude that xC(x) is the inverse of the function x − x2. Hence, we can set B(x) = C(x)
and A(x) = 1

1−x and apply the Lagrange inversion formula to yield

Cn =
1

n+ 1
[xn]

1

(1− x)n+1

16

The series on the right side of the equation merely contains multinomial coefficients, and we have previously
demonstrated n multichoose k to equal

(
n+k−1

k

)
, which yields

Cn =
1

n+ 1
[xn]

1

(1− x)n+1
=

1

n+ 1

(
n+ 1 + n− 1

n

)
=

1

n+ 1

(
2n

n

)
These two methods for finding the Catalan numbers explicitly have been fun, but not as fun as playing “pin
the tail on the Dyck path.” Consider a Dyck path from the coordinate (0, n) to (n + 1, 0) where the final
direction is necessarily going to the right. That is, we have taken a regular Dyck path from (0, n) to (n, 0),
and attached a “tail” pointing east. We can associate with these Dyck paths bit-string words w that have n
0s, n+ 1 1s, and end in a 1. We first note that there are

(
2n
n

)
total words corresponding to paths from (0, n)

to (n + 1, 0), and n + 1 words corresponding the same rotation class. We now show that only one of these
corresponds to a Dyck path with a tail. Taking our Dyck path, we can extend it infinitely by duplication on
either side. At the end of each horizontal “step” (i.e. a 1 in the binary word), we can place a mark. As n
and n+1 are relatively prime, each period of marks corresponding to the same rotation lie on the same same
line of slope n

n+1 . Further, each marked point lies on its own line of this slope (as two lattice points cannot
lie on a line of this slope without being at least n + 1 away from each other on the x axis). Thus, there is
a unique “highest” mark, and considering the line of slope n

n+1 that lies tangent to it, we have constructed
a Dyck path with a tail, as all steps lie underneath it. Thus, we get our familiar formula for the Catalan
numbers

Cn =
1

n+ 1

(
2n

n

)
We can frame the Lagrange inversion formula in relation to Dyck paths and Catalan numbers. In particular,
we can view the Lagrange inversion formula as stating

bn =
1

n+ 1

∑
ar1ar2 · · · arn+1

where the sum on the right hand side is over non-negative r1, · · · , rn+1 whose sum is n. We can rather
cleverly identify the ri as representing the lengths of the runs of zeros in the previously described bit strings
(i.e. lengths of vertical segments in the associated paths). We can hence consider the prior sum as being a
sum over Dyck paths, and for each Dyck path, we sum over all rotations the term ar1ar2 · · · arn+1

. Given

A(x) = a0 + a1x+ . . .

We therefore have that

B(x) = a0 + a0a1x+ (a20a2 + a0a
2
1)x2 + (a30a3 + 3a20a1a2 + a0a

3
1)x3

where we get the coefficient terms by counting the tailed Dyck paths from (0, n) to (n+ 1, 0). We divide by
n + 1 automatically here as only one out of n + 1 rotations is a Dyck path. A common idea once we are
able to count something is to establish a q-analogue for it. For example, we can consider the q-analogue of
function composition ∑

fng(x)n =⇒
∑

fng(x)g(qx) · · · g(qn−1x)

In the case of the above formulation of the Lagrange inversion formula, we can consider injecting powers of
q with exponents equal to the area between a given Dyck path and the “highest” Dyck path - namely, a
staircase. We can perform a more specific analysis by viewing the Catalan numbers as a sum over all Dyck
paths of a certain length of 1 (i.e. each summand is 1). The modification we make is that we change each
summand to be q|δ\λ|, which is q raised to the power of the area between the Dyck path and the highest
Dyck path. This would yield a q-analogue for the Catalan numbers:

Cn(q) =
∑
λ

q|δ\λ|

We could alternatively employ the formulas

(k)q = 1 + q + · · ·+ qk−1 (k)q! = (1)q · · · (k)q

17

and then defining

Cn(q)′ =
1

(n+ 1)q

(
2n

n

)
q

either approach yields a viable q-analogue to the Catalan numbers, and the two q-analogues are both in
common use.

5 The Cycle Index

We aim now to introduce the cycle index of a combinatorial species. Consider a species F ; we’ve already
established our ability to associate a function F (x) to F . We are interested in observing how permuting
the elements of a set A changes the structures that F associates to A. In particular, we’d like to see which
structures of F are fixed by a given element w ∈ Sym(A). Recall the cycle type of a permutation w - a
decreasing tuple containing the sizes of the cycles comprising w - as well as the cycle indicator of w - the
monomial in p1, p2, · · · , where the exponent of pi is the number of cycles of length i in w.

Definition 5.1
The cycle index of a combinatorial species F is given by

ZF (p1, p2, · · ·) =
∑
n

1

n!

∑
w∈Sym(n)

|F ([n])w|pτ(w)

where |F ([n])w| is the number of elements of F ([n]) fixed by w and pτ(w) is the cycle indicator of w.

The cycle index ZF contains strictly more information than the exponential generating function, as setting
p1 = x yields only one permutation: the identity. Thus, we are simply counting the number of structures on
n elements, as all elements are fixed.

Theorem 5.2 (The lemma that is not Burnside’s)
The number of orbits of a group G acting on a set X is given by

1

|G|
∑
g∈G
|Xg|

where |Xg| denotes the set of points x ∈ X fixed by g.

As a notational convention, we define

ZF [x] := ZF (x, x2, x3, . . .)

Thus, we have that

ZF [x] =
∑
n

1

n!

∑
w∈Sn

|F ([n])w|xn

and by Burnside’s lemma, we see the inner term is precisely equal to the number of orbits of Sn on F ([n]).
In particular, we can observe that

1

n!

∑
w∈Sn

|F ([n])w|

is the average number of F -structures on A fixed by an element of the symmetric group, which is hence the
number of orbits of F (A) under action by the symmetric group. But orbits under relabelling are really just
unlabelled structures, so in fact we have that

ZF [x] =
∑
n

xn#{unlabelled F -structures}

18

that is, from the exponential generating function for labelled structures we have uncovered the ordinary
generating function for unlabelled structures. Before we go into examples, we first note that just as operations
on species corresponded to operations on generating functions, they also correspond to operations on the
cycle indices of the species (showing that the product of cycle indices is the cycle index of a product species
requires a bit of care, but it boils down to considering the product of the cycle indices term-by-term and
decomposing into products of terms from the individual cycle indices). Further, we note that we can reexpress
the prior sum as ∑

n

1

n!

∑
a∈F ([n])

∑
w∈Stab(a)

pτ(w)

and the innermost sum can be considered as some special quantity relating to each element of F ([n]).
As an example, we look at linear orderings. In a linear ordering, there are no automorphisms, as relabeling

the ordering yields a different ordering. We can derive the cycle index of L in terms of the indicator X and
1 using the same identity

L = 1 +X · L

We first analyze the indicator species. The cycle index Z1 of 1 is trivially 1. Similarly, ZX = p1. Thus, we
get that

ZL = 1 + p1 · ZL =⇒ ZL = L(p1) =
1

1− p1
Next, we look at ordered rooted trees. Previously, we had the identity

T = X · (L ◦ T)

Although we haven’t yet dealt with composition, we will see that this implies that

ZT = p1 ·
(

1

1− p1

)
From this, we can derive that

ZT = T (p1) = p1C(p1) = xC(x)

where C(x) is the Catalan number generating function.
As another example, let’s determine the cycle index for the trivial species E. Any permutation will fix

the single structure on [n], and we have

ZE =
∑
n

1

n!

∑
w∈Sym(n)

pτ(w)

We can be a bit clever and consider replacing pi with pix
i, which would yield

ZE(xp1, x
2p2, · · ·) =

∑
n

∑
w∈Sym(n)

pτ(w)
xn

n!

Noting additionally that P = E ◦ C, where C is the species for cycles, we can recall

C(x) =
∑ xk

k
C(p1, p2, · · · ;x) =

∑
pk
xk

k

from which it follows that ∑
n

∑
w∈Sym(n)

pτ(w)
xn

n!
= exp

(∑
pk
xk

k

)
This function is of particular import, and hence we define

Ω = exp

(∑
pk
xk

k

)
=
∑
n≥0

hn

19

where hn is the complete symmetric polynomial of degree n (consisting of the sum of all degree n monomials
in p1, · · · , pn). We check that when we plug in p1 = x, and p2, . . . , pn = 0, we get the generating function
ex. If we set p1 = x, we get that

ZE(x, 0, 0, . . .) = expx = ex

Similarly, we can compute ZE(x, x2, . . .) as

ZE(x, x2, . . .) = exp
∑
k>0

xk

k
= exp log

1

1− x
=

1

1− x

which makes sense, as this is the ordinary generating function, and by setting all pi = x, we have multiplied
by n! in each sum term. Next we look at the species of permutations. We note that changing the labels is
equivalent to conjugation. Thus, the set of points P ([n])w is given by the set of g that do not change under
permutation. That is, P ([n]) = Z(w), the centralizer of w. Thus, we get that

ZP =
∑
n

∑
w∈Sn

|Z(w)|pτ(w) =
∑
n

∑
w∈Sn

zτ(w)pτ(w)

as
n!

|Z(w)|
= |conjugacy class of w| = n!

zτ(w)

Furthermore, as
1

n!

∑
w∈Sn

|Z(w)|pτ(w) =
∑
|λ|=n

pλ

we can solve for ZP as

ZP =
∑
|λ|=n

pλ =
∏
i

1

1− pi

We can verify that

ZP (x, 0, 0, . . .) =
1

1− x
Next, we can see that unlabeled permutations are equivalent to partitions, as

ZP (x, x2, x3, . . .) =
∏
i

1

1− xi

which is the ordinary generating function for partitions.

Now, we can only get so far without understanding the relation between cycle indices and species com-
position.

Definition 5.3 (Plethystic Substitution)
We define the Plethystic Substitution on a function A in variables a1, a2, · · · .

pk[A] = A
∣∣∣
a7→ak

As an example,

pk

[∑
xi

]
=
∑

xki

We redefine our notation, letting

Z[A] := Z
∣∣∣
pk 7→pk[A]

We see that this aligns with our previous definition, as

Z[x] = Z(x, x2, x3, · · ·)

as we replace pk with pk[x] = xk.

20

Theorem 5.4
If F is a species and A the ordinary generating function for some weighted set X, then ZF [A] is the
ordinary generating function for unlabelled F structures decorated by A. Formally, this constitutes
mapping the elements of the set of F structures to elements in X, and weighting the set by the product
of the weights of the corresponding decorations.

Recall that

ZF =
∑
n

1

n!

∑
w∈Sn

|F ([n])w|pτ(w)

If our theorem is true, then this should give us the ordinary generating function for unlabelled F structures
with each vertex weighted by x. We can see that this holds as

ZF [x] =
∑
n

(
1

n!

∑
w∈Sn

|F ([n])w|

)
xn

which by Burnside’s lemma reduces to the ordinary generating function unlabeled structures, as this corre-
sponds to the orbit under action of the symmetric group. We let FY (S) denote the set of Y -decorated F
structures on S. That is,

FY (S) = F (S)× Y S

We have

ZFY (p1, p2, · · · ; a1, a2, · · ·) =
∑
n

1

n!

∑
w∈Sn

|FY ([n])w|pτ(w)

We say more formally, that some (f, d) ∈ FY is fixed iff f ∈ F ([n])w and d is constant on the cycles of w.
To count the number of elements in the latter case, we simply take the pks denoting the length of each cycle
and replace it with the plethystic evaluation of A, as each cycle of length k contributes yk in weight. Thus,
we have that

|FY ([n])|w = |F ([n])w| · pτ(w)[A]

And in particular, we derive that
ZFY [x] = ZF [Ax]

which follows from∑
n

1

n!
|Fy([n])|pτ(w)[x] =

∑
n

1

n!

∑
w∈Sn

|F ([n])w|pτ(w)[A]pτ(w)[x] =
∑
n

1

n!
|F ([n])w|pτ(w)[Ax]

We are now ready to define the composition of cycle indices. We begin by defining

pk ∗W := W
∣∣∣
p` 7→pk`

from which we can define for cycle indices Z(p1, . . . , pn) and W (p1, . . . , pn),

Z ∗W := W
∣∣∣
pk 7→pk∗w

Thus, we have that
(Z ∗W)[A] = Z[W [A]]

As it turns out, the above property characterizes Z ∗W . That is, the plethystic evaluation operator Z[A]
of a function Z determines Z itself. This is because if A =

∑∞
i=1 xi, then the pk[A] are linearly indepen-

dent.

Theorem 5.5
Let F and G be combinatorial species. Then

ZF◦G = ZF ∗ ZG

21

Proof. It suffices to show that for any A, we have

ZF◦G[A] = (ZF ∗ ZG)[A] = ZF [ZG[A]]

A is nothing but the weighted ordinary generating function for some set, so the left-hand side of the above
equation refers to the set of unlabelled F structures on unlabelled G structures decorated by A. The right-
hand side consists of unlabelled F structures decorated by unlabelled G structures that are decorated by A.
It is relatively simple to see that these two things are the same.

Note that this same technique allows us to demonstrate in a new way our previous result

ZF ·G = ZF · ZG

We return to the trivial species

ZE = Ω = exp
∑ pk

k
=
∑
λ

pλ
zλ

We note that the plethystic substitution

Ω[A+B] = Ω[A]Ω[B]

As an example, consider

Ω[x1 + x2 + . . .] =
∏ 1

1− xi
=
∏

Ω[xi]

As another example, recall the Bell species B(S) given by the set of partitions of S. We have that

B = E ◦ (E − 1)

from which we get that
ZB = Ω ∗ (Ω− 1)

We can use this to far more efficiently evaluate the ordinary generating function for integer partitions, as
this is given precisely by unlabeled set partitions. We can solve

ZB [x] = Ω[Ω[x]− 1] = Ω[x+ x2 + . . .] =

∞∏
i=1

1

1− xi

as before.
As yet another example, we consider unlabelled rooted trees. Previously, we counted ordered rooted trees,

yielding the generating function for the Catalan numbers. Let tn denote the number of unlabelled rooted
trees. Let Tu(x) denote the ordinary generating function for these unlabelled rooted trees. The first few
terms are given by

Tu(x) = t1x+ t2x
2 + . . .

We have the species identity
T = X · (E ◦ T)

Thus, we get that
ZT = p1 · (Ω ∗ ZT)

This is quite a powerful tool, but we will use it here to simply compute Tu using Tu = ZT [x]. In particular,
p1[x] = x, and

Ω ∗ ZT = exp
∑
k

pk ∗ ZT [x]/k = exp
∑
k

pk ∗ ZT [xk]/k

which yields

ZT [x] = x exp
∑
k>0

1

k
ZT [xk]

22

While this is not a nice closed-form solution, it does allow us to compute these values by successive approx-
imation.

We can apply our tools to study isomorphism classes of simple graphs with a given vertex set S. In particu-
lar, we will make a mixed generating function weighting graphs on S by qe, where e is the number of edges
of the graph. It’s relatively simple to find that

FG(x; q) = 1 + x+ (1 + q)x2/2 + (1 + q)3x3/3! + · · · =
∑

(1 + q)(
n
2)x

n

n!

We aim then to find the cycle index ZG[x; q]. This will allow us to count graphs up to isomorphism. That
is, isomorphism classes of graphs.

6 Cycle indices for graphs

We now focus on computing the cycle indices for (simple) graphs. We denote by G(S) the species consisting
of graphs with vertex set S. We want to not only keep track of the number of graphs, but also the number
of edges we have in the graph. Thus, we will weight our generating function with q|E|. This gives us the
mixed exponential generating function

FG(x, q) =
∑

(1 + q)(
n
2) x

n

n!

We can similarly mix ordinary generating coefficients for q into the the cycle index ZG, letting

ZG(p1, . . . , q) =
∑
n

1

n!

∑
w∈Sn

|G([n])w|qpτ(w)

where |G([n])w|q denotes the ordinary generating function weighted by q. As the number of permutations of
a given cycle type is given by n!

zτ
, we can rewrite the above as

∑
n

∑
|τ |=n

1

zτ
|G([n])wτ |qpτ

In the way of identifying the graphs fixed by a certain permutation, we consider two cycles, of lengths τi and
τj , in a given permutation. Observe that if there is an edge between a vertex of cycle i and a vertex of cycle
j in a certain graph, then in order for it to be preserved by the permutation, all edges in the orbit of this
single edge must be included in the graph. This yields lcm(τi, τj) edges. Because there are τiτj total pairs of
vertices that we could choose from these two cycles, the number of possible cycles (i.e. orbits of edges under
the permutation) is

τiτj
lcm(τiτj)

= gcd(τi, τj)

This means that each pair of cycles in a given permutation contributes a factor of

(1 + qlcm(τi,τj))gcd(τi,τj)

We could alternatively consider an edge within a single cycle i. The orbit of any particular edge under the
action of the permutation is of size τi (if τi is even, then one orbit has size τi/2), and the number of cycles
(orbits) is bτi/2c. Thus, we get that for odd τi, the weighting is given by

(1 + qτi)(τi−1)/2

and for even τi we have a weighting
(1 + qτi)τi/2−1(1 + qτi/2)

23

Hence, we find that the cycle index ZG(p1, p2, · · · ; q) for graphs is

∑
n

∑
|τ |=n

1

zτ
pτ ·

∏
i<j

(1 + qlcm(τi,τj))gcd(τi,τj)

(∏
τi odd

(1 + qτi)
τi−1

2

)(∏
i even

(
(1 + qτi)

τi
2 −1(1 + q

τi
2)
))

We try to obtain a similar result for connected graphs. We note that as a graph may be decomposed into
connected components, we have the species identity

G = E ◦Gconn

This gives us immediately that
ZG = Ω ∗ ZGconn

We can similarly state that
ZG(p; k) = Ω ∗ ZGconn(p; q)

where the above plethysm is given by

pk ∗ f(p; q) = f(pk, p2k, . . . ; q
k)

Intuitively, it is better to think of the pk as operators on power series. Now that we have written this identity,
we can find the cycle index for connected graphs if we are somehow able to compute the “plethystic inverse”
of Ω. We can write this problem more generally as solving for C, given B, in the equation

1 +B = Ω ∗ C

That is to say, can we find a Λ such that
Λ ∗B = C

We note that we can think of p1 as a plethystic identity, as

p1 ∗A = A = A ∗ p1

Thus, we aim to find Λ such that
Λ ∗ (Ω− 1) = p1 = (Ω− 1) ∗ Λ

It is not immediately obvious that a right and left inverse exists for Ω, but by successive approximations, we
can show that these exist. As they both exist, they must be the same. We have

Γ ∗ Λ = 1 + p1

so

exp
∑
k

1

k
pk ∗ Λ = 1 + p1

Now noting that pk ∗ Λ = Λ(pk, p2k, · · ·), we find∑
k

1

k
pk ∗ Λ = p1 − 12/2 + · · · =

∑
(−1)m−1

pm1
m

To solve this equation for Λ, we attempt to find a candidate solution L for each term of the summation. We
can begin by letting L = p1. This gives us that∑ 1

k
pk ∗ L = p1 +

p2
2

+
p3
3

+
p4
4

+
p5
5

+
p6
6

We need to get rid of these extra terms, so let’s first add a −p22 term. This subtracts the even terms from
the above sequence. By subtracting −p33 , we get rid of the multiples of 3 (although we’ve now subtracted 6
twice!). By subtracting −p55 , we get rid of the multiples of 5. We now have to add back a p6

6 . In general, we

24

get that powers of primes go away, but products of distinct primes have to be added back to account for this.
This brings us to a number-theoretic concept known as Möbius inversion. Formally, the Möbius function

µ(n) :=

{
(−1)` n = p1 . . . p`

0 otherwise

It is a well-known result that ∑
`|n

µ(`) = δn,1

where δ is the Kronecker delta function. To prove this, let S(n) be the sum above over the divisors of n.
Without loss of generality, assume µ(n) 6= 0. Let p be a prime divisor of n. Then∑

`|n

µ(`) =
∑
`|n/p

µ(`) +
∑
`|n/p

−µ(`) = 0

where the first sum includes factors of n not divisible by p and the second sum includes factors of n divisible
by p.

We can observe now that

L =

∞∑
`=1

µ(`)
f(p`)

`

whence it follows that ∑ 1

k
pk ∗ L =

∑
k,`

µ(`)
f(pk`)

k`
= f(p1)

where f(p1) = log(1 + p1)

7 Symmetric Functions

Definition 7.1 (Symmetric polynomial)
A symmetric polynomial over a (probably commutative) ring R in n variables is a polynomial P ∈
R[X1, X2, · · · , Xn] invariant under any R-isomorphism fixing {X1, · · · , Xn}.

Some examples of symmetric polynomials include

• The sum of the kth powers of variables

xk1 + xk2 + · · ·+ xkn = pk(x1, . . . , xn)

• The kth elementary symmetric polynomial in x1, · · · , xn:

ek =
∑

1≤i1<···<ik≤n

k∏
j=1

aij

We may also consider symmetric polynomials in infinitely many variables. However, we must be careful in
our definition, as if we enforce that the polynomial is invariant under the action of S∞ on the variables, we
must have infinitely many terms in the polynomial, since if x1 is present, so must x2, . . . , x∞. We therefore
consider formal series. Let R be the ring of symmetric formal series in x1, x2, · · · . What do we mean, in
general, by a symmetric formal series? Vaguely, we call a series symmetric if it is invariant under action by
S∞ on x1, x2, · · · , but we have two conceptions of S∞. We have a “thick” S∞, which consists of all bijections
{X1, X2, · · ·} → {X1, X2, · · ·}, and we have a “thin” S∞ which contains all finite permutations (i.e. that
fix all but finitely many variables). This thin S∞ is generated by the set of transpositions. The thin S∞ is

25

therefore a subgroup of the thick S∞ given by a direct limit of finite permutation groups. Consider a finite
partition λ. We define

mλ = xλ1
1 · · ·x

λ`
` + all similar terms

where “all similar terms” refers to all distinct monomials in the orbit of the first term under action by S∞.
Observe that regardless of which conception of S∞ we use, this notion will be the same. For example, we
have

pk = xk1 + xk2 + · · · = m(k)

and
ek =

∑
|I|=k

xI = m(1,1,··· ,1)

where xI =
∏
i∈I xi. A “less trivial” example is

m(2,1) = x1x
2
2 + x21x2 + x1x

2
3 + x21x3 + x1x

2
4 + x21x4 + x2x

2
3 + x22x3 + · · ·

where we include obscenely many terms to demonstrate the care we’ve taken to assure that the · · · in fact
refers to all terms. It’s quite evident at this point that

R = {(potentially infinite) linear combinations
∑
λ

cλmλ}

where cλ is an element of the ground ring (from now on, we simply use Z). It is important to note that the
mλ do not form a (Hamel) basis, as we can have infinite linear combinations. We consider the subring Λ ⊂ R
given by the set of f ∈ R of bounded degree. It follows that the elements of Λ are finite linear combinations
of mλs. Thus, the set of mλ form a basis of Λ (as a free module over Z). We refer to the elements of Λ as
symmetric functions. We can speak of homogeneous symmetric functions of degree d which are symmetric
functions all of whose terms are of degree d. We then have

Λ =
⊕
d≥0

Λd

where Λd is the set of homogeneous symmetric functions of degree d. It follows that Λ is graded. We have
that {mλ | |λ| = d} forms a basis for Λd. There is a projection homomorphism from Λ (or equivalently ΛZ to
Z[X1, · · · , Xn]Sn obtained by setting Xn+1, Xn+2, · · · to 0. We can therefore think of symmetric functions
in n variables as reductions of symmetric functions in infinite variables.

Next, we consider a different basis for symmetric functions. We consider the ek mentioned above

ek := m(1k)

and further define

eλ :=

|λ|∏
i=1

eλi

Consider any eλ. We know the mλ functions to be a basis of Λ, so we can determine the coefficients of the
mµ in the representation of eλ. That is, we’d like to determine

[xµ1xµ2 · · ·xµ`]eλ1
eλ2
· · · eλm

We can do this by filling in an m× ` matrix whose ith row is an indicator vector for the product of xi’s we
“take” from eλi . In particular, the number of 1s in row i is simply λi, and the number of 1s in the ith column
is simply µi. Any matrix of this form represents a single term (by which we mean a term with coefficient
1) in eλ. Hence, the coefficient of mµ in eλ is the number of 0-1 matrices with row-sums given by λ and
column sums given by µ. Note that matrices of this form are in bijection with 0-1 matrices with row-sums
given by µ and column sums given by λ (under the transpose mapping), so we have

[mµ]eλ = [mλ]eµ

As an example, we consider degree 3 symmetric functions.

26

m111 m21 m3

e3 1 0 0
e21 3 1 0
e111 6 3 1

Notably, this matrix is lower triangular and as 1s along the diagonal. This comes from the fact that
[mλ∗]eλ = 1 where λ and λ∗ are transpose. If we could show that this is the case in general, then we would
have that the matrix is invertible over the integers (as it would have determinant 1). Before we get around
to showing that the eλ functions form a basis, we make note of a partial ordering on partitions of n. We say
λ ≤ µ if the ith partial sum of λ is less than or equal to the ith partial sum of µ for all i (we pad partitions
with zeros to give λ and µ the same length). As it turns out, this partial ordering is a total ordering for
n < 6, so we use as our example the partitions of 6.

Below is a diagram of the partial ordering for partitions of length 6.

(6)

(51)

(42)

(33) (411)

(321)

(222) (3111)

(2211)

(21111)

(111111)

A few of intuitive notes about this partial ordering

• λ ≤ µ⇔ µ∗ ≤ λ∗. This is not necessarily obvious.

• If µ and λ are such that µ ≤ κ ≤ λ =⇒ κ ∈ {µ, λ} and µ ≤ λ, then the Young diagram of µ can be
obtained from the Young diagram of λ by moving a single square up by one row (recall that Young
diagrams are left and bottom-justified). This explains the previous note.

• If we consider the weaker partial order ≤∗ where µ ≤∗ λ if µ can be obtained from λ by moving a
square up a row, then the ordering ≤ is the transitive closure of ≤∗. We leave the proof of this (i.e.
that λ < µ =⇒ ∃ν s. t. λ < ν ≤ µ) to the enthusiastic reader.

Now we prove that the previously considered matrix is in fact triangular. We claim that if [mµ]eλ 6= 0, then
µ ≤ λ∗. Observe that in the first k entries of row i, there are at most min(k, λi) entries equal to 1. The sum
over all rows of these first k entries is precisely the kth partial sum of µ, which is hence bounded by∑

i

min(k, λi)

But this sum is precisely equal to the kth partial sum of λ∗, so it follows that µ ≤ λ∗ (as k is arbitrary).
We have shown now that if [mµ]eλ 6= 0, then µ ≤ λ∗, meaning that all entries of the aforementioned matrix

27

that are above the main diagonal (these entries correspond to µ and λ such that µ > λ∗) are 0. Further,
it is simple to see that entries on the main diagonal of this matrix are equal to one, which gives us that
this matrix is lower diagonal with determinant one. It follows that the elementary symmetric polynomials
comprise a basis of the algebra of symmetric polynomials.

We have from this that {eλ | |λ| = d} forms a basis of Λ(d), and furthermore, we get that {eλ | λ1 ≤ n}
(just as {mλ | `(λ) ≤ n} was) a basis for Z [x1, . . . , xn]

Sn . Thus, we have that

Z [x1, . . . , xn]
Sn ' Z [e1, . . . , en]

This is also known as the fundamental theorem of symmetric functions.
In general, ∏

(αi − αj)2

is known as the discriminant. For example, in the degree 2 polynomial (x − α1)(x − α2), we have that the
coefficient of x is given by α1 + α2. Likewise, we have that

(α1 − α2)2 = α2
1 + α2

2 − 2α1α2

= m2(α1, α2)− 2m11(α1, α2)

= e21 − 4e2

For the monic polynomial we had before, e21 − 4e2 = b2 − 4ac as e1 = −b and e2 = c.

Next, we define the complete homogenous polynomials given by the sum of all monomials of degree k,
which we may write as

hk =
∑
|λ|=k

mλ

We get, for example, that

h1 = x1 + x2 + . . . , h2 = x21 + x1x2 + x22 + x1x3 + . . .

We can write h2 in terms of the elementary symmetric functions as

h2 = e21 − e2

We define

hλ =

|λ|∏
i=1

hλi

As one would expect, the hλ form a basis over Λ. We prove this by relating the generating function of the
hn to those of the en. The generating function for the elementary symmetric function is given by

E(t) =

∞∑
n=0

tnen(x) =
∏
i

(1 + txi) e0(x) = 1

Likewise, we have that the generating function for the hn

H(t) =

∞∑
n=0

tnen(x) =
∏
i

(1 + txi) h0(x) = 1

In particular, we can observe that H(t)E(−t) = 1, whence it follows that∑
k+`=n

(−1)`hke` = 0

for n > 0. This gives us a relation between the complete homogeneous symmetric polynomials and the
elementary symmetric polynomials. This relation gives us an inductive method for calculating the hn poly-
nomials from the en polynomials and vice-versa. This tells that the subring of the symmetric polynomials
generated by the hλ is the entire ring and that the hn are algebraically independent. From this, we get that

28

• The hλ form a basis of the algebra of symmetric functions.

• Λ = Z[h1, . . . , hn]

• Z[x1, . . . , xn]Sn ' Z[h1, . . . , hn]

Having offered two nice bases for the algebra of symmetric functions, we can consider the mapping ω : Λ→ Λ
given by ω(hk) = ek and ω(ek) = hk (these relations clearly induce the mapping on all functions since the ek
and the hk each form a basis). The ring homomorphism ω is an involution and is a fundamental tool/object
in the study of symmetric functions.

We alternatively show the computation of the coefficient of mµ in hλ. We have that

[mµ]hλ = [xµ]hλ

Our process is going to be very similar. We again consider a matrix representation. Again, our row sums
must be λ and our column sums must be µ, but this time, hλ is not necessarily a monomial. Thus, we
get that the transformation matrix is a non-negative integer matrices with row sums λ and column sums µ.
Furthermore, these matrices in fact must be symmetric (the same must hold for the es).

Consider the generating function

∏
i,j

1

1− xiyj
=
∏
j

(∏
i

1

1− yjxi

)

We note that the term inside the parentheses is given precisely by H(yj) =
∑
ynj hn(x). Thus, we may write

this product above as ∑
λ

mλ(y)hλ(x) =
∑
λ,µ

mλ(y)mµ(x)

By a similar argument we get that ∏
i,j

(1 + xiyj) =
∑
λ

mλ(y)eλ(x)

Now we hope to introduce an inner product 〈, 〉 : Λ⊗Λ 7→ Z We want this inner product to be defined such
that hµ is the dual basis to mλ. Thus, we define

〈mλ, hµ〉 = δλµ

It follows from this definition that

〈hλ, hµ〉 = [mµ]hλ = [mλ]hµ = 〈hµ, hλ〉

We first note a generic fact of bilinear forms (which applies also to free modules over a commutative ring).
Suppose we have a non-degenerate pairing (not necessarily symmetric)

〈, 〉 : W ⊗ V 7→ K

where K is the ground field. Let wi ∈W and vi ∈ V be dual bases under this pairing. We can think of the
pairing as a linear functional W 7→ V ∗ which takes a vector and returns the functional, that when given an
element of V , returns the value of the pairing with w. Since the pairing is non-degenerate, this map is a
bijection. We would like to claim that ∑

wi ⊗ vi ∈W ⊗ V

depends only on the pairing.

29

Going back to our product above, we can see that it belongs to Λd(X) ⊗ Λd(Y), as it is doubly symmetric
in x and y. Thus, in our sum ∑

λ,µ

mλ(y)mµ(x)

the product really functions as a tensor product, and as described above, it is uniquely described given the
pairing that we defined above. Thus, in fact we get that the product∏

i,j

1

1− xiyj
=
∑
λ

uλ(y)vλ(x)

for all dual bases uλ and vλ for 〈, 〉 with degree |λ|.

We’ve now made note of four distinct bases for the algebra of symmetric functions. We’d like to make
note of a slight distinction between the power sum symmetric functions and the other three bases - the
monomial symmetric functions, the elementary symmetric functions, and the complete homogeneous sym-
metric functions - in terms of structure. This distinction is that the other three bases form Z-bases of ΛZ,
while we will in fact see that the power sum symmetric functions comprise a Q-basis of ΛQ. We define

pk := m(k) =
∑
i

xki

As we have done before, we define

pλ =

|λ|∏
i=1

pλi

We want to show that {pλ} forms a Q basis for ΛQ. There are a few ways to show this. We start by writing
pλ as a sum of monomials, writing

pλ =
∑

cλµmµ

In general, the terms of pλ can be thought of as picking some “bunches” of λ and adding these bunches
together. We have

pλ = cλλmλ +
∑
λ<µ

cλµmµ

where the ordering that we reference is the refinement ordering, in which µ < λ if µ can be obtained from
λ by splitting up some block or blocks of λ into two or more parts, rather than the typical ordering on
partitions (in fact, however, the typical ordering is a subset of the refinement ordering). In the case of
equality, we have that the number of ways we can pick λ is given by the number of ways we can label the xi
so as to give the same partition. That is to say, we don’t get a coefficient cλλ = 1, we instead get

cλλ =
∏

ri!

where ri denotes the number of partitions there are of size i. We can write, as we have done previously, a
matrix for conversion from the monomial symmetric functions to the power sum symmetric functions. Take
the example for degree-3 polynomials:

m111 m21 m3

p111 6 3 1
p21 0 1 1
p3 0 0 1

We have, as we did before, a triangular matrix with nonzero entries along the diagonal, but in this case, the
determinant is non-unital, and hence the inverse of this matrix contains rational (non-integral) numbers.

30

Similar to how we used a relationship between ek and hk to show that hλ was a basis, we will find a
relationship between the hk and the pk to show that the pλ form a (Q) basis.

H(t) =
∑

hn(x)tn =
∏ 1

1− txi
= Ω[tx]

We can observe now that

logH(t) =
∑
i

log
1

1− txi

=
∑
i

∑
k>0

tkxki
k

=
∑
k>0

tkpk(x)

k

which allows us to conclude that

H(t) = exp
∑

pk
tk

k
= Ω[tx]

Whereas previously, the pk were plethystic evaluation operators, we now have a similar formula where the
pk are truly polynomials (they are power sum). Setting t = 1 and recalling that∏ 1

1− xi
= exp

∑ pk
k

= ZE = Ω[x]

and also that ∏ 1

1− xi
=
∑

hn(x)

we get that

hn =
∑
|λ|=n

pλ
zλ

(using our earlier computation for the degree n term of Ω). Now recall the previously defined involution ω
which swaps the elementary symmetric polynomials and the complete homogeneous polynomials. We have
that

ωH(t) = E(t) =
∑

ent
n =

∏
(1 + txi) = H(−t)−1

and taking the logarithm of both sides yields

ω logH(t) = − logH(−t)

or equivalently,

ω
∑

pk
tk

k
= −

∑
pk

(−t)k

k

Thus, it follows that [
tk

k

]
ωpk = (−1)k−1pk

and hence that
ωpλ =

∏
(−1)λi−1pλ = (−1)n−`(λ)pλ

Note that (−1)n−`(λ) is the sign of a permutation of cycle type λ. So we have another identity:

en =
∑
|λ|=n

(−1)n−`(λ)
pλ
zλ

This identity, coupled with the prior identity giving a formula for the complete homogeneous symmetric
polynomials, suggests a deep connection between the symmetric functions of fixed degree and the symmetric

31

group.

We tie up a few loose ends on power sums. It now makes sense to think of plethystic evaluation as an
operation on Λ. For

f ∈ ΛQ = Q [p1, p2, · · ·]

we have that f [A] = f
∣∣∣
pk 7→pk[A]

and f [X] = f(x1, x2, . . .) were X =
∑
xi. In the way of determining f [X],

we consider instead
f [−εX]

∣∣∣
ε=−1

we can observe that
pk[−εX] |ε=−1= −εkpk(X1, X2, · · ·)

∣∣∣
ε=−1

= (−1)k−1pk

so
ωf = f [−εX]

∣∣∣
ε=−1

= (−1)df [−X]

for f homogeneous of degree d.
We further note that we may write

Ω[XY] =
∏ 1

1− xiyj
=
∑
λ

uλ(y)vλ(x)

for uλ and vλ dual bases. We may further write

Ω =
∑
λ

pλ
zλ

as before, thus

Ω[XY] =
∑
λ

pλ [XY]

zλ
=
∑
λ

pλ [X] pλ [Y]

zλ

which resembles our above sum! Thus, we have that the pλ are (nearly) self dual, we need only scale by a
factor of zλ. More formally, we have that

〈pλ, pµ〉 = δλµzλ = δλµzµ

where the second equality follows since we multiply by δλµ We can in particular observe that

〈hn, pλ〉 =
∑
|µ|=n

〈
pµ
zµ
, pλ

〉
= 1 for all λ

and also
〈en, pλ〉 = (−1)n−`(λ) = sign of τλ

7.1 Schur Functions

We introduce this very important class of symmetric polynomials using Jacobi’s “bi-alternate” formula.

Definition 7.2
An antisymmetric polynomial f(x1, x2, · · · , xn) is a polynomial such that

f(· · · , xi, · · · , xj , · · ·) = −f(· · · , xj , · · · , xi, · · ·)

That is, switching two variables changes the sign of the polynomial.

32

We observe immediately that if λ does not have n distinct parts (one of the parts may be 0), then

[xλ]f = 0

If λ does have n distinct parts, then xλ can occur in f , and if it does, then it induces n! total terms with
coefficients induced by the condition that f is antisymmetric. Said induced polynomials comprise a basis for
the antisymmetric polynomials of degree n. As an example, we have

a210 = x21x2 − x1x22 + x1x
2
3 − x2x23 + x22x3 − x21x3

In general, we may write

aµ =

∣∣∣∣∣∣∣
xµ1

1 . . . xµnn
...

. . .
...

xµn1 · · · xµnn

∣∣∣∣∣∣∣
As an example, we can observe the smallest partition with n distinct parts, namely ρ = (n−1, n−2, · · · , 1, 0).
The determinant giving aρ is called the Vandermonde determinant and is in fact equal to

πi<j(xi − xj)

This fact is called the Vandermonde identity (apparently); the proof is not so hard. As a side note, the
Vandermonde determinant is the square root of the discriminant of the polynomial with roots x1, · · · , xn.

If we take any partition λ and add ρ to it, we necessarily get a partition with distinct parts (and in fact,
we may use this as the general form of a partition with distinct parts). As such, we have that the aλ+ρ
polynomials comprise a basis for the antisymmetric functions. Further, we can see that aλ+ρ is divisible by
aρ for all λ, meaning that

aλ+ρ
aρ

is a symmetric polynomial of degree |λ| (the divisibility comes from the fact

that setting two variables equal in any antisymmetric function must make the function equal 0). Further,
given any symmetric function, we can multiply by aρ to get an antisymmetric function. We have now given
a bijection between symmetric and antisymmetric polynomials.

Definition 7.3 (Schur functions)
The Schur functions are the symmetric functions given by

Sλ(x1, . . . , xn) =
aλ+ρ
aρ

As an example, we see that

S1n =
a(n,1)

aρ
= x1 · x2 . . .

Due to the aforementioned bijection between symmetric and antisymmetric functions, we have trivially that
the Schur functions form a basis for the symmetric polynomials. As another example, we show how to get
other polynomials in terms of the Schur polynomials. We take as an example aρ ·m2. We know that the
product must be some linear combination of aρ+(2) and aρ+(11). We first note that when consider the product
terms, adding a power of two to any of the terms except for the first two will yield 0, as will end up with two
xi of equal degree. We can see that the coefficient of aρ+(2) must be 1, as when we add 2 to the exponent
of x1, we get this exactly. When adding 2 the the exponent of x2, we see that we nearly get the right term,
but it is written in the wrong order where the order n− 1 term appears first. To fix this, we must swap x1
and x2, which yields a negative sign as transpositions have negative sign. Thus, we get that

aρ+(2) − aρ+(11) = aρ ·m2 =⇒ m2 = S(2) − S(1)

It is true in general that
S(k) = hk S(1k) = ek

33

these facts are not obvious, but they can be proven with techniques similar to what we have just discussed.

Consider now
aλ+ρ(x1, x2, · · · , xn−1, 0)

Considering the determinant that gives aλ+ρ, we have that if λn 6= 0, then setting xn = 0 makes the
determinant equal to 0. If λn = 0, then all but the last entry of the rightmost column of the matrix become
0, and hence the determinant of the matrix reduces to the determinant of the upper left (n − 1) × (n − 1)
block of the matrix. The determinant of this block is in fact equal to

a(λ1,··· ,λn−1)+ρn−1
(x1, · · · , xn−1) · x1 · · ·xn−1

because we have removed all terms with xn (which yields a(λ1,··· ,λn−1) and increased the exponent of all vari-
ables by 1 (which gives the x1 · · ·xn−1. We can perform a similar computation to compute Sλ(x1, x2, · · · , xn−1, 0).
We have that

Sλ(x1, x2, · · · , xn−1, 0) =
aλ+ρn(· · · , 0)

aρn(· · · , 0)
=
aλ+ρn−1

aρn−1

= Sλ(x1, · · · , xn−1)

with the special exception that the value is 0 if λn > 0.

We can also write

Sλ(x1, x2, · · ·) =
∑
µ

Kλµmµ = Sλ[x1 + · · ·+ xn] =

{
Sλ(x1, · · · , xn) n ≥ `(λ)

0 n < `(λ)

where we call the Kλµ the Kostka Coefficients. Notably, these coefficients do not depend on n. We may
therefore write in Λ, the set of symmetric polynomials in infinite variables as

Sλ =
∑
µ

Kλµ ·mµ

Writing Sλ =
aλ+ρ
a+ρ , we have

Sλ(x1, . . . , xn) =

∑
w∈Sn(−1)`(w)xw(λ+ρ)∏

i<j(xi − xj)
=
∑
w∈Sn

w

(
xλ+ρ∏

i<j(xi − xj)

)

Rewriting this using the identity ∏
i<j

(xi − xj) = xρ
∏
i<j

(1− xj
xi

)

, we may rewrite the above as

Sλ(x1, . . . , xn) =
∑
w∈Sn

w

(
xλ∏

i<j(1−
xj
xi

)

)

which is also known as the Weyl character formula. The character of an irreducible representation is given
by the trace of an element of the Borel subgroup under the representation. In general, the characters are
symmetric polynomials (as traces are invariant under conjugation), and we can see that in fact, they are
basis elements of Λ given by the Schur polynomials. As it turns out, Kλµ refers to the dimension of the µ
weight space of an irreducible representation Vλ. Thus, we can show (even non-combinatorially), that the
Kostka coefficients are nonnegative.

We continue our study of the Schur functions by introducing the Bernstein operators Bm which simply
adds a part to a partition λ. Formally, we have that Bm · Sλ = S(m;λ). Under this convention, we need to
determine how the Schur functions are defined for non-partitions. Suppose we have a sequence λ that is not
necessarily a partition. If, upon adding ρ, we have all distinct parts, then we may write λ+ ρ = w−1(ν + ρ)
where w ∈ Sn and ν is a valid partition. We may now write ν = w(λ+ ρ)− ρ, and we define

Sλ = (−1)`(w)Sν

34

Now, we can write

S(m;λ) =
∑
w∈Sn

w

(
xm1 x

λ1
2 · · ·x

λn−1
n∏

j>1(1− xj/xi) ·
∏

1<i<j(1− xj/xi)

)
which we may simplify (by collecting terms with a common denominator) to

S(m;λ) =
∑
i

xmi sλ[X − xi]∏
j 6=i(1− xj/xi)

=
xm1 Sλ(x2, · · · , xn)∏

j 6=1(1− xj/x1)

We independently note that

Ω[Xz] =

n∏
i=1

1

1− xiz
=
∑
i

1

1− xiz
∏
j 6=i

1

1− xj
xi

Notice that if we take any function of z−1 and multiply by 1
1−xiz , we have that the constant term

[z0]

[
f(z−1) · 1

(1− xiz)

]
= f(xi)

Going back to our previous expression, notice that we have a very similar expression

S(m;λ) =
xm1 Sλ(x2, · · · , xn)∏

j 6=1(1− xj/x1)
= [z0]

[
Ω[Xz]z−mSλ[X − z−1]

]
= [zm]Ω[Xz]Sλ[X − z−1]

as the latter two product terms in the first equality convert 1
1−xiz into xmi Sλ[X − xi]. We thus define, for

some arbitrary g ∈ Λ (as opposed to simply Schur polynomials),

Bmg(x) := [zm]Ω[Xz]Sλ[X − z−1]

As a final detail, we note that, under the inner product on Λ, we have (as a proposition), that

〈Ω[AX], g(X)〉 = g[A]

We can show this as follows. We may write

Ω[AX] =
∑
λ

hλ[A]mλ(X)

we chose hλ and mλ, but this equality in fact holds for any pair of dual bases. Thus,

〈Ω[AX], g(X)〉 = 〈
∑
λ

hλ[A]mλ(X), g(X)〉

from which the result follows. This enables us to define the adjoint operator θ⊥ to θ by 〈θ⊥f, g〉 = 〈f, θg〉.
We claim that

Ω[AX]⊥f = f [X +A]

We have that
〈Ω[AX]⊥f, g〉 = 〈f,Ω[AX]g〉

Now we make the important note that the expression Ω[BX] is just as general as g(x), and hence we need
to demonstrate that

〈f [X +A],Ω[BX]〉 = 〈f,Ω[AX]Ω[BX]〉

The left-hand side of this is nothing but f [B +A], and the right-hand side simplifies to 〈f,Ω[(A+B)X]〉 =
f [A+B], and hence the two are equal, proving the prior claim.

35

Having introduced the Bernstein raising operators for Schur functions, we hope to explore the properties of
these operators some more. We had

Bm = [zm]Ω[zX]Ω[−z−1X]⊥

and we found that for the Schur fucntion Sλ, we have

Bm · Sλ = S(m;λ)

that is, Bm adds a part to the partition λ. We have the convention

Sµ =
∑

w

(
xµ∏

i<j(1− xj/xi)

)

for any µ ∈ Zn. Note that if µ + ρ has any repeated entries, we’ll have Sµ = 0. Otherwise, µ + ρ is some
permutation of λ+ ρ, for λ a partition, and hence we have Sµ = Sλ · sign(w). where w sends λ to µ. Falling
out of these Bernstein operators, for example, is that

S(m) = Bm · 1 = hm(x)

We hope now to address the multiplication of a Schur polynomial by an elementary polynomial. We have

Sλ = Bλ1 ·Bλ2 · · · · ·Bλ` · 1

We need to understand how multiplication and perping interact. The result we have is that

Ω[AX]⊥Ω[BX] = Ω[AB]Ω[BX]Ω[AX]⊥

so when we commute two operators like this, we find a “constant factor.” To explain this, we note that

Ω[AX]⊥Ω[BX]f(x) = Ω[B(x+A)]f(x+A)

= Ω[AB]Ω[BX]Ω[AX]⊥f

recall that the adjoint operator of Ω[AX] substitutes x for x + A (this explains the first line), and also Ω
sends sums to products. Now note that

Ω[uX] =
∑

hn(X)un

and, recalling the behavior of Ω when we negate the argument (see earlier in these notes), we find that

Ω[−uX] =
∑

(−1)kek(x)uk =
∑

ek(x)(−u)k

Now we take Ω[−uX] and the generating function for the Bernstein operators. We have

Ω[−uX]Ω[zX]Ω[−z−1X] = Ω[zX]Ω[−z−1X]⊥Ω[−uX]Ω[−uz−1]

= Ω[zX]Ω[−z−1X]⊥Ω[−uX](1− uz−1)

We can now take the coefficient of (−u)kzm on both sides. This gives us

ekBm = Bmek +Bm+1ek−1

so now we have some way of commuting the ek’s and the Bm’s. We now turn our attention back to the
Schur polynomials. We find that

ekSλ = ekBλ1
·Bλ2

· · · · ·Bλ` · 1

=
∑

Bλ1+ε1B · · ·Bλ`+ε`ej

36

where εi is either 0 or 1 (representing which of the two summands in the above formula we choose) and

j +
∑

εi = k

That is, the ej rectifies any difference in degree between the terms of the summation and k. We can write ej
as S(1j), and we find that the B · · ·Bej is a Schur function. This corresponds to an `-tuple, composed of the
parts of λ possibly boosted by 1, but this `-tuple is not necessarily a partition, as if λ has two consecutive
equal parts, the latter of which is boosted, we get a followed by a + 1 in the resulting `-tuple. This is
ostensibly an issue, but when we consider that the Weyl character function of a partition with repeated
parts is 0, we realize that these terms simply don’t matter, seeing as if we have a followed by a + 1 in µ,
then µ+ ρ will have at least one repeated part. We finally arrive at the Pieri rule:

eksλ =
∑
µ

sµ

where µ is a partition such that µ/λ is a vertical k-strip (i.e. we’ve added k 1’s to the partition λ - including
to any 0 components at the end of λ - to obtain µ). With this rule in mind, we can consider e⊥k . We have

Ω[−uX]⊥ =
∑

ek(x)⊥(−u)k

and we observe that (playing the same game as before)

[Ω[−uX]⊥Ω[zX]Ω[−z−1X]⊥ = Ω[−uz]Ω[zX]Ω[−z−1X]⊥Ω[−uX]⊥

= (1− uz)Ω[−z−1X]⊥Ω[−uX]⊥

so taking the coefficient of (−u)kzm yields

e⊥k Bm = Bme
⊥
k +Bm−1e

⊥
k−1

Now we have
ekSλ = ekBλ1

· · ·Bλ` · 1

whence it follows that
ekSλ =

∑
µ

Sµ

where this time we subtract one from any k parts of λ in such a way that we end up with a valid partition. We
have found a very nice duality between eλ and e⊥λ , and this duality is very important, as it tells us something
deep about the Schur functions and their structure. In particular, the Schur functions are determined entirely
by the Pieri rule, and at the same time, the elementary symmetric functions can be generated (inductively)
entirely using Schur functions and the Pieri rule. One thing we can observe relatively quickly is that when
the ek are expanded using Schur functions, all coefficients are positive. We also note that

〈eµ, Sλ〉 = e⊥µ = Sλ

where |λ| = |µ|. Note that since the eλ functions comprise a basis for symmetric functions, knowledge of
these inner products is tantamount to knowledge of all of the Schur functions.

Let’s consider the dual basis S̃λ to the Schur functions. We first note that

[Sµ]ekSλ =

{
1 if µ/λ is a vertical k-strip

0 otherwise

and we have that
〈S̃λ, ekSλ〉 = 〈e⊥k S̃µ, Sλ〉 = [S̃λ]e⊥k S̃µ

In other words, S̃λ = Sλ, so the Sλ comprise an orthonormal basis! This is a beatiful fact, because in general,
having an inner product over a free Z-module does not imply the existence of an orthonormal basis, and yet

37

in this case we have one. The other great thing is that orthonormal bases (of Z-modules) are unique up to
reording and sign changes.

We’d now like to turn our attention to the interactions between the Bernstein operators and the complete
homogeneous symmetric functions. In this case, we will require some more careful combinatorial analysis,
because we won’t be as lucky as we were with the elementary symmetric functions, where all of the “non-
nice” terms (where we didn’t get a partition after adding the 0-1 vector) vanished. This is because instead
of adding 0-1 vectors, we are adding general vectors. Recall the generating function for the hk:

Ω[uX] =
∑

hk(x)uk

We find that

Ω[uX]Ω[zX]Ω[−z−1X]⊥ = Ω[zX]Ωp− z−1X]⊥Ω[uX]Ω[uz−1]

=
Ω[zX]Ω[−z−1X]⊥Ω[uX]

1− uz−1

Taking the coefficient of ukzm gives

hkBm =

k∑
`=0

Bm+`hk−`

In other words, unlike the case of the elementary symmetric functions, where we could only change by 0 or
by 1, we can now change by any constant `. This means that

hkSλ =
∑
µ

Sµ

where µ = λ + ν, with ν any non-negative vector with total weight k. There are many terms of this sum
in which µ is not valid partition but still does not vanish due to asymmetrization. As it turns out, it will
be the case that any µ in which some part of the partition is extended beyond a part in a previous row will
get cancelled by another such µ. This means that any µ with Sµ in the above some is obtained by adding a
horizontal strip of length k to λ. This gives us the Pieri rule for the hk:

hkSλ =
∑
µ

Sµ

where µ/λ is a horizontal k-strip. We can offer an inductive argument for why all of the aforementioned
non-partitions cancel.

We could apply a similar analysis to h⊥k , but we can also be clever and realize that since the hk and
the ek are dual under ω, the rule for h⊥k is dual to the rule of e⊥k . In other words,

h⊥k Sµ =
∑

Sµ

where µ is such that λ/µ is a horizontal k-strip. Recall that we previously mentioned that the Kostka
coefficient Kλµ is given by Kλµ = [mµ]Sλ = 〈hµ, Sλ〉 = 〈1, h⊥µ Sλ〉 = h⊥µ Sλ. This is nothing but the number
of ways to reduce λ to nothing (i.e. the empty partition) by removing a succession of horizontal strips of
sizes µ`, µ`−1, · · · , µ1, which again demonstrates that Kλµ is a positive integer (we previously demonstrated
this by observing Kλµ as the dimension of a weight space). Now, one way we can think of removing these
strips is by writing the index i (as in µi) of the size of the strip we remove.

Having established the Schur functions as an orthonormal basis in the inner product space of symmetric
functions (thanks to the Pieri rules), we can recall the Kostka coefficients:

Kλµ = [mµ]sλ sλ =
∑
µ

Kλµmµ

38

Recalling that the mµ functions are dual to the hµ functions, we can write instead that

Kλµ = [sλ]hµ

In particular, Kλµ is the number of ways we can build up the partition λ by repeatedly adding horizontal
strips whose lengths are given by the parts of µ. As an example, suppose we have

λ = (3, 2, 2) µ = (2, 2, 1, 1, 1)

One manner of building λ as a set of horizontal strips is

1

2

3

1

4

5

2

We can hence view the Schur function as a generating function

sλ =
∑

T∈SSYT(λ)

xT

where SSYT(λ) is the set of semistandard Young tableaux of partition λ. Of note is the fact that ωsλ = sλ∗ ,
so the ω operator acts as a sort of transpose when we operate in the basis of Schur functions.

If we instead consider the difference between the diagram between a larger diagram and a smaller dia-
gram, we get a Skew Young diagram (denoted λ/µ). We can recognize these diagrams as whenever we have
two squares that are diagonally opposite, we must have the whole rectangle. We now look at semistandard
skew tableaux. To verify that this construction yields symmetric functions, we need only check that con-
secutive variables are symmetric. We can see that this holds, as for all cells that lie in between columns in
which there is a change in the height of the diagram, we may swap i and i+1 with no repercussions. Another
way to think about this is to label (reading from left to right) all instances of i with a right parenthesis
and all instances of i + 1 with a left parenthesis. We may demonstrate symmetry by first eliminating all
matching left and right parenthesis, and among the unmatched portion, swapping the number of each type
of parenthesis.

Let’s consider the significance of the skew Schur functions. In particular, consider

[mν]Sλ/µ = Kλ/µ,ν

The left-hand side can be seen to be the inner product of hν with Sλ/µ, and we have

〈hν , Sλ/µ〉 = 〈hνSµ, Sλ〉

We can then reconstruct
sλ/µ = s⊥µ sλ

In other words, taking the inner product of two Schur functions gives a skew Schur function.

As a special case of multiplying Schur functions, we consider S21 · S21. We choose this product since it
is in some sense the smallest nontrivial example, in that it is not simply a row or a column. We consider the
coefficient of Sλ in S21 · S21 for arbitrary λ. Note that

[Sλ]S21 · S21 = 〈Sλ, S21 · S21〉 = 〈S⊥21Sλ, S21〉 = 〈Sλ/21, S21〉

This gives us that

39

8 Representation theory

Definition 8.1 (Coordinate free representation)
A matrix representation of a finite group G is a homomorphism ϕ : G 7→ GL(V) where V is a (finite-
dimensional) vector space. We only care about a representation up to conjugation of elements in
GL(V), as this simply corresponds to a change in basis. Such consideration leads to coordinate free
representations. As we want a characteristic 0 field that is algebraically closed, we pick C as our ground
field.

Definition 8.2 (Character)
In our pursuit of coordinate-free properties of our representation, we define the character χ : G 7→ C
given by

χ(g) = trV (ϕ(g))

This definition of character leads to several nice properties. Firstly,

χV⊕W = χV + χW

and we also have
χV⊗W = χV χW

Furthermore, as desired, the character is invariant under a change of basis. We also have that if we have a
submodule W ⊂ V , we can write

V = W ⊕ V/W
yielding the formula

χV = χW + χV/W

We note that if a submodule exists, it must be the case that the underlying space can be decomposed into
a direct sum of irreducible submodules – that is, submodules for which no invariant subspace exists.

As an example, we consider Sn acting on Cn by permuting coordinates. One invariant subspace (sub-
module) we can find is the one dimensional subspace

W = C · (1, . . . , 1)

The quotient (in Cn) of this subspace

V/W = {(x1, . . . , xn) |
∑
i

xi = 0}

Note that we would not be able to find this quotient if our field characteristic divided the order of the group.
If G � V , then we automatically have that G � V ∗ by composing ϕ with the dual operator. As

ϕ(gh)∗ = ϕ(h) ∗ ϕ(g)∗

we must take the inverse to construct a proper homomorphism

ϕ((gh)−1) = ϕ(g−1)∗ϕ(h−1)∗

Thus, we have that
χV ∗(g) = χV (g−1) = χV (g)

In general, if we were to consider linear maps Hom(V,W), we can have G act on this space by letting

g · α = g ◦ α ◦ g−1

Note that we can recover our previous homomorphism on the dual by considering W = C and letting g act
trivially on W . As Hom(V,W) = V ∗ ⊗W , we have by the above that

χHom(V,W)(g) = χV ∗ ∗ χW (g) = χW (g)χV (g−1)

40

Definition 8.3 (G-module homomorphism)
A G-module homomorphism ψ : V 7→W has the property that

ψ(gv) = gψ(v)

from which we have htat
gψg−1 = ψ

It follows that the space of G-module homomorphisms

HomCG(V,W) = HomC(V,W)G

where
V G := {v ∈ V | gv = v ∀g ∈ G}

It follows that
χV (1) = dimV

We define a convenient operator known as the Reynolds operator

R :=
1

|G|
∑
g∈G

g

We show that the Reynolds operator is a projection on any G-module into the subspace V G. Formally, we
have that

gRv =
1

|G|
∑
h∈G

ghv = Rv

Furthermore, for v ∈ V G, we have that

Rv =
1

|G|
∑
g∈G

gv =
1

|G|
|G| · v = v

from which it follows that R is a projection. We finally have from this that

χ)V (R) = dimV G

Combining all that we have from above, we have that

dim homG(V,W) = dim homC(V,W)G = χhom(V,W)(R) =
1

|G|
∑
g∈G

χW (g)χV (g−1) := 〈χV , χW 〉

Thus, we have now defined an inner product of characters by considering the dimension of G-modules over
linear maps from V to W .

Definition 8.4 (Irreducible)
A G-module V is irreducible if it has no nontrivial submodule W .

Lemma 8.5 (Schur’s Lemma)
Suppose that V and W are irreducible G-modules. Then we have

homG(V,W) =

{
0 if V 6'W
C otherwise

41

Proof. Consider a homomorphism ϕ from V to W . Suppose that ϕ is not injective. Then it has a nontrivial
kernel kerϕ ⊂ V (where inclusion is strict). But this is a nontrivial submodule of V , contradicting that V is
irreducible. Hence, ϕ is injective. This implies that the image of ϕ is nontrivial, as no two elements can both
map to 0. If ϕ is not a surjection, then Imϕ is a nontrivial submodule of W , contradicting the irreducibility
of W . Hence, ϕ is an injection and a surjection, meaning that it is a bijection, i.e. an isomorphism. If
V 6'W , then there can be no homomorphism ϕ : V →W .

In the case where they are isomorphic, this problem reduces to finding homG(V, V) where V is irre-
ducible. In particular, this means that we may consider the eigenvalues and eigenvectors of elements of G.
Furthermore, we note that C is algebraically closed. Thus, if λ is an eigenvalue of ϕ, then we have that

ker(ϕ− λI) 6= 0

However, we also have that ϕ − λI is a G-module homomorphism. But by our previous argument in the
other case, we have that this is not an isomorphism. Thus, we have that

ϕ− λI = 0

and thus that ϕ = λI, giving us our 1-dimensional space.

It follows that these character functions are orthonormal under the inner product defined above.

Theorem 8.6 (Maschke’s Complete Reducibility Theorem)
If V is a G-module, and W is a submodule of V , then there exists W ′ ⊂ V (a submodule) such that
V = W ⊕W ′.

Proof. We aim to find an inclusion map i : W 7→ V and the projection map p : V 7→W such that W ′ = ker(p)
and p ◦ i − idW . We pick a p arbitrarily from homC(V,W) and “fix” it by applying the Reynolds operator
and considering Rp ∈ homG(V,W). We need only show that (Rp) ◦ i = idW . We can see this as

1

|G|
∑
g∈G

gpg−1iw =
1

|G|
∑
g∈G

gpig−1w =
1

|G|
∑
g∈G

w = w

Note that in this proof we relied on the fact that the character of the field does not divide the order of the
group.

As a corollary, to this (and the fact that irreducible characters are orthonormal), we can state that χV
determines V . We can further say that if

V '
⊕
Viirr.

Vi

(a form which is always possible to obtain), the multiplicities of the Vi (i.e. lumping together isomorphic
Vi) are fixed. That is, a character encapsulates multiplicities of irreducible submodules in a decomposition
thereinto.

We now consider G � X where X is a finite set. While this is not a vector space, we can make it a vector
space by considering elements of g as permutation matrices on indicator functions (vectors in C|X|) for set
elements. We can think of this more succinctly as G � CX. If we look at the trace of a permutation matrix,
we get a 1 in the ith diagonal entry iff the ith set element is fixed under the permutation. Thus, we have
that

χCG = |Xg|
We can in fact prove Burnside’s lemma through our existing character formulas. We have that

dim(CX)G = |XG| = XCX(R) =
1

|G|
∑
g∈G

XCX(g) =
1

|G|
∑
g

|Xg|

As an example, we consider G � G by left multiplication. Again, this is equivalent to considering
G � CG. We look at the character of this representation:

χCG(g) =

{
|G| g = 1

0 g 6= 1

42

We have that
χCG =

∑
V inv.

(dimV)χV

from which it follows that
CG '

⊕
V inv.

(dimV) · V

43

	Organizing numbers
	Ordinary generating functions
	Formal power series
	Partitions and Stirling numbers
	Stirling numbers as an algebraic tool

	Combinatorial Species
	Catalan Numbers
	The Cycle Index
	Cycle indices for graphs
	Symmetric Functions
	Schur Functions

	Representation theory

